
If the sum of first $p,q,r$ term of an $a,b,c$ respectively. Prove that $\dfrac{a}{p}\left( {q - r} \right) + \dfrac{b}{q}\left( {r - p} \right) + \dfrac{c}{r}\left( {p - q} \right) = 0$
Answer
560.7k+ views
Hint: We will write the sum of first $p,q,r$ terms using the formula, $\dfrac{n}{2}\left( {2A + \left( {n - 1} \right)D} \right)$ where $A$ is first term of the A.P. and $D$ is the common difference. Then, substitute the values of $\dfrac{a}{p}$, $\dfrac{b}{q}$ and $\dfrac{c}{r}$ in the left-hand-side of the given equation. Simplify it to make it equal to RHS.
Complete step-by-step answer:
We are given that sum of first $p,q,r$ term of an $a,b,c$
We know that the sum of first $n$ terms of a sequence is $\dfrac{n}{2}\left( {2A + \left( {n - 1} \right)D} \right)$, where $A$ is first term of the A.P. and $D$ is the common difference.
Let $A$ be the first term of the A.P. and let $D$ be the common difference of the A.P.
Hence,
$
a = \dfrac{p}{2}\left( {2A + \left( {p - 1} \right)D} \right) \\
\Rightarrow \dfrac{a}{p} = \dfrac{1}{2}\left( {2A + \left( {p - 1} \right)D} \right) \\
$
Similarly, sum of first $q$terms is $b$
$
b = \dfrac{q}{2}\left( {2A + \left( {q - 1} \right)D} \right) \\
\Rightarrow \dfrac{b}{q} = \dfrac{1}{2}\left( {2A + \left( {q - 1} \right)D} \right) \\
$
And sum of first $r$ terms is $c$
$
c = \dfrac{r}{2}\left( {2A + \left( {r - 1} \right)D} \right) \\
\Rightarrow \dfrac{c}{r} = \dfrac{1}{2}\left( {2A + \left( {r- 1} \right)D} \right) \\
$
We have to prove $\dfrac{a}{p}\left( {q - r} \right) + \dfrac{b}{q}\left( {r - p} \right) + \dfrac{c}{r}\left( {p - q} \right) = 0$
We will substitute the values of $\dfrac{a}{p}$, $\dfrac{b}{q}$ and $\dfrac{c}{r}$ in the above equation.
$\dfrac{1}{2}\left( {2A + \left( {p - 1} \right)D} \right)\left( {q - r} \right)+ \dfrac{1}{2}\left( {2A + \left( {q - 1} \right)D} \right)\left( {r - p} \right)+\dfrac{1}{2}\left( {2A + \left( {r- 1} \right)D} \right)\left( {p - q} \right) =0 $
We will simplify the LHS and will prove it equal to RHS.
$
= \left( {2A + \left( {p - 1} \right)D} \right)\left( {q - r} \right) + \left( {2A + \left( {q - 1} \right)D} \right)\left( {r - p} \right) + \left( {2A + \left( {r - 1} \right)D} \right)\left( {p - q} \right) \\
= \left( {2A + pD - D} \right)\left( {q - r} \right) + \left( {2A + qD - D} \right)\left( {r - p} \right) + \left( {2A + rD - D} \right)\left( {p - q} \right) \\
= 2Aq + pqD - rD - 2rA - rpD + Dr + 2Ar + qrD + rD - 2Ap - pqD + Dp + 2Ap \\
- 2Aq + rDp - qrD - pD + qD \\
$
On adding and subtracting like terms, we will be left with 0, which is equal to RHS.
Hence, proved.
Note: In an A.P., the sequence is of type $a,a + d,a + 2d,a + 3d,......$. The ${n^{th}}$ term of the sequence is given as ${a_n} = a + \left( {n - 1} \right)d$. And the sum of $n$ terms of sequence is given by $\dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right)$ and $\dfrac{n}{2}\left( {a + {a_n}} \right)$
Complete step-by-step answer:
We are given that sum of first $p,q,r$ term of an $a,b,c$
We know that the sum of first $n$ terms of a sequence is $\dfrac{n}{2}\left( {2A + \left( {n - 1} \right)D} \right)$, where $A$ is first term of the A.P. and $D$ is the common difference.
Let $A$ be the first term of the A.P. and let $D$ be the common difference of the A.P.
Hence,
$
a = \dfrac{p}{2}\left( {2A + \left( {p - 1} \right)D} \right) \\
\Rightarrow \dfrac{a}{p} = \dfrac{1}{2}\left( {2A + \left( {p - 1} \right)D} \right) \\
$
Similarly, sum of first $q$terms is $b$
$
b = \dfrac{q}{2}\left( {2A + \left( {q - 1} \right)D} \right) \\
\Rightarrow \dfrac{b}{q} = \dfrac{1}{2}\left( {2A + \left( {q - 1} \right)D} \right) \\
$
And sum of first $r$ terms is $c$
$
c = \dfrac{r}{2}\left( {2A + \left( {r - 1} \right)D} \right) \\
\Rightarrow \dfrac{c}{r} = \dfrac{1}{2}\left( {2A + \left( {r- 1} \right)D} \right) \\
$
We have to prove $\dfrac{a}{p}\left( {q - r} \right) + \dfrac{b}{q}\left( {r - p} \right) + \dfrac{c}{r}\left( {p - q} \right) = 0$
We will substitute the values of $\dfrac{a}{p}$, $\dfrac{b}{q}$ and $\dfrac{c}{r}$ in the above equation.
$\dfrac{1}{2}\left( {2A + \left( {p - 1} \right)D} \right)\left( {q - r} \right)+ \dfrac{1}{2}\left( {2A + \left( {q - 1} \right)D} \right)\left( {r - p} \right)+\dfrac{1}{2}\left( {2A + \left( {r- 1} \right)D} \right)\left( {p - q} \right) =0 $
We will simplify the LHS and will prove it equal to RHS.
$
= \left( {2A + \left( {p - 1} \right)D} \right)\left( {q - r} \right) + \left( {2A + \left( {q - 1} \right)D} \right)\left( {r - p} \right) + \left( {2A + \left( {r - 1} \right)D} \right)\left( {p - q} \right) \\
= \left( {2A + pD - D} \right)\left( {q - r} \right) + \left( {2A + qD - D} \right)\left( {r - p} \right) + \left( {2A + rD - D} \right)\left( {p - q} \right) \\
= 2Aq + pqD - rD - 2rA - rpD + Dr + 2Ar + qrD + rD - 2Ap - pqD + Dp + 2Ap \\
- 2Aq + rDp - qrD - pD + qD \\
$
On adding and subtracting like terms, we will be left with 0, which is equal to RHS.
Hence, proved.
Note: In an A.P., the sequence is of type $a,a + d,a + 2d,a + 3d,......$. The ${n^{th}}$ term of the sequence is given as ${a_n} = a + \left( {n - 1} \right)d$. And the sum of $n$ terms of sequence is given by $\dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right)$ and $\dfrac{n}{2}\left( {a + {a_n}} \right)$
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

