
If the shortest distance between the lines $\vec{r}=\hat{i}+2\hat{j}+3\hat{k}+\lambda \left( 2\hat{i}+3\hat{j}+4\hat{k} \right)$ and $\vec{r}=2\hat{i}+4\hat{j}+5\hat{k}+\mu \left( 3\hat{i}+4\hat{j}+5\hat{k} \right)$ is k, then the value of ${{\tan }^{-1}}\tan \left( 2\sqrt{6}k \right)$ should be given by
(A). 1
(B). 2
(C). $2-\pi $
(D). $\dfrac{\pi }{2}-2$
Answer
604.2k+ views
Hint: In the question, we are already given the equations of the straight lines and we have to find the shortest distance between them which will give us the value of k. Using that value of k, we can find ${{\tan }^{-1}}\tan \left( 2\sqrt{6}k \right)$, which will be our required answer.
Complete step-by-step solution -
Let
\[\begin{align}
& {{{\vec{a}}}_{1}}=\hat{i}+2\hat{j}+3\hat{k} \\
& {{{\vec{a}}}_{2}}=2\hat{i}+3\hat{j}+4\hat{k} \\
& {{{\vec{a}}}_{3}}=2\hat{i}+4\hat{j}+5\hat{k} \\
& {{{\vec{a}}}_{4}}=3\hat{i}+4\hat{j}+5\hat{k}..............(1.1) \\
\end{align}\]
Then the straight lines given in the question can be written as
$\vec{r}={{\vec{a}}_{1}}+\lambda {{\vec{a}}_{2}}$
and
$\vec{r}={{\vec{a}}_{3}}+\lambda {{\vec{a}}_{4}}$
respectively.
We know that the shortest distance between two lines represented by $\vec{r}=\vec{p}+\lambda \vec{q}$ and
$\vec{r}=\vec{t}+\lambda \vec{s}$ is given by
$\text{dist=}\left| \dfrac{\left( \vec{t}-\vec{p} \right).\left( \vec{q}\times \vec{s} \right)}{\left| \vec{q}\times \vec{s} \right|} \right|..............(1.2)$
Therefore, in this case, the shortest between the lines should be
$\text{dist=k=}\left| \dfrac{\left( {{{\vec{a}}}_{3}}-{{{\vec{a}}}_{1}} \right).\left( {{{\vec{a}}}_{2}}\times {{{\vec{a}}}_{4}} \right)}{\left| {{{\vec{a}}}_{2}}\times {{{\vec{a}}}_{4}} \right|} \right|..............(1.3)$
From (1.1), we get
$\begin{align}
& {{{\vec{a}}}_{3}}-{{{\vec{a}}}_{1}}=\left( 2-1 \right)\hat{i}+\left( 4-2 \right)\hat{j}+\left( 5-3 \right)\hat{k} \\
& =\hat{i}+2\hat{j}+2\hat{k}..........................(1.4) \\
\end{align}$
And the cross product should be given by
$\begin{align}
& {{{\vec{a}}}_{2}}\times {{{\vec{a}}}_{4}}=\left| \begin{matrix}
{\overset{\scriptscriptstyle\frown}{i}} & {\overset{\scriptscriptstyle\frown}{j}} & {\overset{\scriptscriptstyle\frown}{k}} \\
2 & 3 & 4 \\
3 & 4 & 5 \\
\end{matrix} \right|=\left( 3\times 5-4\times 4 \right)\hat{i}+\left( 3\times 4-2\times 5 \right)\hat{j}+\left( 2\times 4-3\times 3 \right)\hat{k} \\
& =-\hat{i}+2\hat{j}-\hat{k}..................(1.5) \\
\end{align}$
Also, we know that the dot product of two vectors is given by
\[\left( a\hat{i}+b\hat{j}+c\hat{k} \right).\left( c\hat{i}+d\hat{j}+e\hat{k} \right)=ac+bd+ce...........(1.6)\]
Therefore, using equation (1.6) in equation (1.4) and (1.5), we obtain
\[\begin{align}
& \left( {{{\vec{a}}}_{3}}-{{{\vec{a}}}_{1}} \right).\left( {{{\vec{a}}}_{2}}\times {{{\vec{a}}}_{4}} \right)=\left( \hat{i}+2\hat{j}+2\hat{k} \right).\left( -\hat{i}+2\hat{j}+-\hat{k} \right) \\
& =1\times -1+2\times 2+2\times -1=1................(1.7) \\
\end{align}\]
And also we know that the magnitude of a vector $a\hat{i}+b\hat{j}+c\hat{k}$ is given by
$\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}$. Therefore, from equation (1.5), we have
$\left| {{{\vec{a}}}_{2}}\times {{{\vec{a}}}_{4}} \right|=\left| -\overset{\scriptscriptstyle\frown}{i}+2\overset{\scriptscriptstyle\frown}{j}-\overset{\scriptscriptstyle\frown}{k} \right|=\sqrt{-{{1}^{2}}+{{2}^{2}}+{{\left( -1 \right)}^{2}}}=\sqrt{6}..................(1.8)$
Therefore, using equations (1.7) and (1.8) in equation (1.3), we have
$\text{k=}\left| \dfrac{\left( {{{\vec{a}}}_{3}}-{{{\vec{a}}}_{1}} \right).\left( {{{\vec{a}}}_{2}}\times {{{\vec{a}}}_{4}} \right)}{\left| {{{\vec{a}}}_{2}}\times {{{\vec{a}}}_{4}} \right|} \right|=\left| \dfrac{1}{\sqrt{6}} \right|=\dfrac{1}{\sqrt{6}}..............(1.10)$
Therefore, we have $2\sqrt{6}k=2\sqrt{6}\times \dfrac{1}{\sqrt{6}}=2................(1.11)$
As for any angle, ${{\tan }^{-1}}\tan \left( \theta \right)=\theta $, therefore taking $\theta =2\sqrt{6}k$ and using equation (1.11), we have
${{\tan }^{-1}}\tan \left( 2\sqrt{6}k \right)=2\sqrt{6}k=2$
Which matches option (b) of the question. Hence (b) is the correct answer to this question.
Note: We should note that in equation (1.3), we could have taken $\left( {{{\vec{a}}}_{1}}-{{{\vec{a}}}_{3}} \right)$ instead of $\left( {{{\vec{a}}}_{3}}-{{{\vec{a}}}_{1}} \right)$ or $\left( {{{\vec{a}}}_{4}}\times {{{\vec{a}}}_{2}} \right)$ instead of $\left( {{{\vec{a}}}_{2}}\times {{{\vec{a}}}_{4}} \right)$ as there is an overall mod and thus the sign of obtained value gets cancelled out. This is done because the shortest distance should be a positive number.
Complete step-by-step solution -
Let
\[\begin{align}
& {{{\vec{a}}}_{1}}=\hat{i}+2\hat{j}+3\hat{k} \\
& {{{\vec{a}}}_{2}}=2\hat{i}+3\hat{j}+4\hat{k} \\
& {{{\vec{a}}}_{3}}=2\hat{i}+4\hat{j}+5\hat{k} \\
& {{{\vec{a}}}_{4}}=3\hat{i}+4\hat{j}+5\hat{k}..............(1.1) \\
\end{align}\]
Then the straight lines given in the question can be written as
$\vec{r}={{\vec{a}}_{1}}+\lambda {{\vec{a}}_{2}}$
and
$\vec{r}={{\vec{a}}_{3}}+\lambda {{\vec{a}}_{4}}$
respectively.
We know that the shortest distance between two lines represented by $\vec{r}=\vec{p}+\lambda \vec{q}$ and
$\vec{r}=\vec{t}+\lambda \vec{s}$ is given by
$\text{dist=}\left| \dfrac{\left( \vec{t}-\vec{p} \right).\left( \vec{q}\times \vec{s} \right)}{\left| \vec{q}\times \vec{s} \right|} \right|..............(1.2)$
Therefore, in this case, the shortest between the lines should be
$\text{dist=k=}\left| \dfrac{\left( {{{\vec{a}}}_{3}}-{{{\vec{a}}}_{1}} \right).\left( {{{\vec{a}}}_{2}}\times {{{\vec{a}}}_{4}} \right)}{\left| {{{\vec{a}}}_{2}}\times {{{\vec{a}}}_{4}} \right|} \right|..............(1.3)$
From (1.1), we get
$\begin{align}
& {{{\vec{a}}}_{3}}-{{{\vec{a}}}_{1}}=\left( 2-1 \right)\hat{i}+\left( 4-2 \right)\hat{j}+\left( 5-3 \right)\hat{k} \\
& =\hat{i}+2\hat{j}+2\hat{k}..........................(1.4) \\
\end{align}$
And the cross product should be given by
$\begin{align}
& {{{\vec{a}}}_{2}}\times {{{\vec{a}}}_{4}}=\left| \begin{matrix}
{\overset{\scriptscriptstyle\frown}{i}} & {\overset{\scriptscriptstyle\frown}{j}} & {\overset{\scriptscriptstyle\frown}{k}} \\
2 & 3 & 4 \\
3 & 4 & 5 \\
\end{matrix} \right|=\left( 3\times 5-4\times 4 \right)\hat{i}+\left( 3\times 4-2\times 5 \right)\hat{j}+\left( 2\times 4-3\times 3 \right)\hat{k} \\
& =-\hat{i}+2\hat{j}-\hat{k}..................(1.5) \\
\end{align}$
Also, we know that the dot product of two vectors is given by
\[\left( a\hat{i}+b\hat{j}+c\hat{k} \right).\left( c\hat{i}+d\hat{j}+e\hat{k} \right)=ac+bd+ce...........(1.6)\]
Therefore, using equation (1.6) in equation (1.4) and (1.5), we obtain
\[\begin{align}
& \left( {{{\vec{a}}}_{3}}-{{{\vec{a}}}_{1}} \right).\left( {{{\vec{a}}}_{2}}\times {{{\vec{a}}}_{4}} \right)=\left( \hat{i}+2\hat{j}+2\hat{k} \right).\left( -\hat{i}+2\hat{j}+-\hat{k} \right) \\
& =1\times -1+2\times 2+2\times -1=1................(1.7) \\
\end{align}\]
And also we know that the magnitude of a vector $a\hat{i}+b\hat{j}+c\hat{k}$ is given by
$\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}$. Therefore, from equation (1.5), we have
$\left| {{{\vec{a}}}_{2}}\times {{{\vec{a}}}_{4}} \right|=\left| -\overset{\scriptscriptstyle\frown}{i}+2\overset{\scriptscriptstyle\frown}{j}-\overset{\scriptscriptstyle\frown}{k} \right|=\sqrt{-{{1}^{2}}+{{2}^{2}}+{{\left( -1 \right)}^{2}}}=\sqrt{6}..................(1.8)$
Therefore, using equations (1.7) and (1.8) in equation (1.3), we have
$\text{k=}\left| \dfrac{\left( {{{\vec{a}}}_{3}}-{{{\vec{a}}}_{1}} \right).\left( {{{\vec{a}}}_{2}}\times {{{\vec{a}}}_{4}} \right)}{\left| {{{\vec{a}}}_{2}}\times {{{\vec{a}}}_{4}} \right|} \right|=\left| \dfrac{1}{\sqrt{6}} \right|=\dfrac{1}{\sqrt{6}}..............(1.10)$
Therefore, we have $2\sqrt{6}k=2\sqrt{6}\times \dfrac{1}{\sqrt{6}}=2................(1.11)$
As for any angle, ${{\tan }^{-1}}\tan \left( \theta \right)=\theta $, therefore taking $\theta =2\sqrt{6}k$ and using equation (1.11), we have
${{\tan }^{-1}}\tan \left( 2\sqrt{6}k \right)=2\sqrt{6}k=2$
Which matches option (b) of the question. Hence (b) is the correct answer to this question.
Note: We should note that in equation (1.3), we could have taken $\left( {{{\vec{a}}}_{1}}-{{{\vec{a}}}_{3}} \right)$ instead of $\left( {{{\vec{a}}}_{3}}-{{{\vec{a}}}_{1}} \right)$ or $\left( {{{\vec{a}}}_{4}}\times {{{\vec{a}}}_{2}} \right)$ instead of $\left( {{{\vec{a}}}_{2}}\times {{{\vec{a}}}_{4}} \right)$ as there is an overall mod and thus the sign of obtained value gets cancelled out. This is done because the shortest distance should be a positive number.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

