
If the set \[G=\left\{ \left( \begin{matrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta \\
\end{matrix} \right):\theta \in R \right\}\] is a group under matrix multiplication. Then, which one of the following statements in respect of G is true.
\[\left( a \right)\left( \begin{matrix}
-1 & 0 \\
0 & -1 \\
\end{matrix} \right)\text{ is the inverse of itself}\]
(b) G is a finite group
\[\left( c \right)\left( \begin{matrix}
\dfrac{1}{2} & \dfrac{-\sqrt{3}}{2} \\
\dfrac{\sqrt{3}}{2} & \dfrac{1}{2} \\
\end{matrix} \right)\text{ is not an element of G}\]
\[\left( d \right)\left( \begin{matrix}
1 & 1 \\
-1 & 1 \\
\end{matrix} \right)\text{ is an element of G}\]
Answer
584.1k+ views
Hint:To solve this question, we will separately consider all options one by one. If G is a group, then ‘a’ is an element of G is inverse of some element by b if ab = e. Also, an element is called the inverse of itself if aa = e, where e is the identity of the group G. Also, an element belongs to G if its properties match with properties of the group.
Complete step by step answer:
Given that,
\[G=\left\{ \left( \begin{matrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta \\
\end{matrix} \right):\theta \in R \right\}......\left( i \right)\]
This G is a group under matrix multiplication.
Let us consider (a) first.
\[\left( a \right)\left( \begin{matrix}
-1 & 0 \\
0 & -1 \\
\end{matrix} \right)\] is the inverse of itself. In a group, an element ‘a’ belongs to G is called the inverse of itself if aa = e where e is the identity of G. Identity of G in equation (i) is \[\left( \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right)\] as matrix multiplication has an identity as \[\left( \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right)\] So, here, we have \[e=\left( \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right).\]
Now, for \[\left( \begin{matrix}
-1 & 0 \\
0 & -1 \\
\end{matrix} \right)\] to be inverse of itself \[\left( \begin{matrix}
-1 & 0 \\
0 & -1 \\
\end{matrix} \right)\left( \begin{matrix}
-1 & 0 \\
0 & -1 \\
\end{matrix} \right)\] should be equal to the identity \[\left( \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right)\] as stated above.
Computing it we get, \[\left( \begin{matrix}
-1 & 0 \\
0 & -1 \\
\end{matrix} \right)\left( \begin{matrix}
-1 & 0 \\
0 & -1 \\
\end{matrix} \right)=\left( \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right)\]
Clearly, RHS has the identity of group G as \[\left( \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right).\]
So, we have \[\left( \begin{matrix}
-1 & 0 \\
0 & -1 \\
\end{matrix} \right)\] as the inverse of itself.
Hence, option (a) is the right answer.
Let us consider option (b) now. G is a finite group.
Because \[\sin \theta \] and \[\cos \theta \] for \[\theta \in R\] have infinite values in between [– 1, 1]. So, as \[\sin \theta \] and \[\cos \theta \] itself have infinite values possible, \[\left[ \begin{matrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta \\
\end{matrix} \right]\] has infinite matrices possible.
Therefore, we have got that G has infinite matrices possible.
Hence, option (b) is wrong.
Let us consider option (c) now.
\[\left( c \right)\left( \begin{matrix}
\dfrac{1}{2} & \dfrac{-\sqrt{3}}{2} \\
\dfrac{\sqrt{3}}{2} & \dfrac{1}{2} \\
\end{matrix} \right)\text{ is not an element of G}\]
Compare \[\left( \begin{matrix}
\dfrac{1}{2} & \dfrac{-\sqrt{3}}{2} \\
\dfrac{\sqrt{3}}{2} & \dfrac{1}{2} \\
\end{matrix} \right)\] with \[\left( \begin{matrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta \\
\end{matrix} \right)........\left( ii \right)\]
Comparing, we get,
\[\dfrac{1}{2}=\cos \theta \]
\[\Rightarrow \cos \theta =\dfrac{1}{2}\]
As we know that \[\cos {{60}^{\circ }}=\dfrac{1}{2}\]
\[\Rightarrow \theta ={{60}^{\circ }}\]
Now, we also know that \[\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}\] and \[\dfrac{-\sqrt{3}}{2}\] is also possible at subsequent angles.
So, all the elements of equation (ii) are matched. Hence, we have \[\left( \begin{matrix}
\dfrac{1}{2} & \dfrac{-\sqrt{3}}{2} \\
\dfrac{\sqrt{3}}{2} & \dfrac{1}{2} \\
\end{matrix} \right)\] is an element of G.
Hence, option (c) is the wrong answer.
Finally, let us consider option (d).
\[\left( d \right)\left( \begin{matrix}
1 & 1 \\
-1 & 1 \\
\end{matrix} \right)\text{ is an element of G}\]
When comparing this, we have,
\[\left( \begin{matrix}
1 & 1 \\
-1 & 1 \\
\end{matrix} \right)=\left( \begin{matrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta \\
\end{matrix} \right)\]
\[\Rightarrow 1=\cos \theta \]
\[\Rightarrow \cos \theta =1\]
\[\Rightarrow \theta ={{\cos }^{-1}}\left( 1 \right)\]
\[\Rightarrow \theta ={{0}^{\circ }}\]
Now, \[\sin \theta =\sin 0=0.\]
But the entry corresponding to \[\sin \theta =1\] in the above comparison, so \[0\ne 1.\] \[\left( \begin{matrix}
1 & 1 \\
-1 & 1 \\
\end{matrix} \right)\] cannot be an element of G.
Hence, option (d) is wrong.
Therefore, the correct option is (a).
Note:
Students can have confusion at the step where option (c) is considered. See, if G is a group and \[a\in G\] then \[-a\in G\] also any scalar multiplication \[Ra\in G\] means if \[\left( \begin{matrix}
\dfrac{1}{2} & \dfrac{\sqrt{3}}{2} \\
\dfrac{-\sqrt{3}}{2} & \dfrac{1}{2} \\
\end{matrix} \right)\in G\Rightarrow \left( \begin{matrix}
\dfrac{1}{2} & \dfrac{-\sqrt{3}}{2} \\
\dfrac{\sqrt{3}}{2} & \dfrac{1}{2} \\
\end{matrix} \right)\] also belongs to G.
Complete step by step answer:
Given that,
\[G=\left\{ \left( \begin{matrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta \\
\end{matrix} \right):\theta \in R \right\}......\left( i \right)\]
This G is a group under matrix multiplication.
Let us consider (a) first.
\[\left( a \right)\left( \begin{matrix}
-1 & 0 \\
0 & -1 \\
\end{matrix} \right)\] is the inverse of itself. In a group, an element ‘a’ belongs to G is called the inverse of itself if aa = e where e is the identity of G. Identity of G in equation (i) is \[\left( \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right)\] as matrix multiplication has an identity as \[\left( \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right)\] So, here, we have \[e=\left( \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right).\]
Now, for \[\left( \begin{matrix}
-1 & 0 \\
0 & -1 \\
\end{matrix} \right)\] to be inverse of itself \[\left( \begin{matrix}
-1 & 0 \\
0 & -1 \\
\end{matrix} \right)\left( \begin{matrix}
-1 & 0 \\
0 & -1 \\
\end{matrix} \right)\] should be equal to the identity \[\left( \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right)\] as stated above.
Computing it we get, \[\left( \begin{matrix}
-1 & 0 \\
0 & -1 \\
\end{matrix} \right)\left( \begin{matrix}
-1 & 0 \\
0 & -1 \\
\end{matrix} \right)=\left( \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right)\]
Clearly, RHS has the identity of group G as \[\left( \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right).\]
So, we have \[\left( \begin{matrix}
-1 & 0 \\
0 & -1 \\
\end{matrix} \right)\] as the inverse of itself.
Hence, option (a) is the right answer.
Let us consider option (b) now. G is a finite group.
Because \[\sin \theta \] and \[\cos \theta \] for \[\theta \in R\] have infinite values in between [– 1, 1]. So, as \[\sin \theta \] and \[\cos \theta \] itself have infinite values possible, \[\left[ \begin{matrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta \\
\end{matrix} \right]\] has infinite matrices possible.
Therefore, we have got that G has infinite matrices possible.
Hence, option (b) is wrong.
Let us consider option (c) now.
\[\left( c \right)\left( \begin{matrix}
\dfrac{1}{2} & \dfrac{-\sqrt{3}}{2} \\
\dfrac{\sqrt{3}}{2} & \dfrac{1}{2} \\
\end{matrix} \right)\text{ is not an element of G}\]
Compare \[\left( \begin{matrix}
\dfrac{1}{2} & \dfrac{-\sqrt{3}}{2} \\
\dfrac{\sqrt{3}}{2} & \dfrac{1}{2} \\
\end{matrix} \right)\] with \[\left( \begin{matrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta \\
\end{matrix} \right)........\left( ii \right)\]
Comparing, we get,
\[\dfrac{1}{2}=\cos \theta \]
\[\Rightarrow \cos \theta =\dfrac{1}{2}\]
As we know that \[\cos {{60}^{\circ }}=\dfrac{1}{2}\]
\[\Rightarrow \theta ={{60}^{\circ }}\]
Now, we also know that \[\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}\] and \[\dfrac{-\sqrt{3}}{2}\] is also possible at subsequent angles.
So, all the elements of equation (ii) are matched. Hence, we have \[\left( \begin{matrix}
\dfrac{1}{2} & \dfrac{-\sqrt{3}}{2} \\
\dfrac{\sqrt{3}}{2} & \dfrac{1}{2} \\
\end{matrix} \right)\] is an element of G.
Hence, option (c) is the wrong answer.
Finally, let us consider option (d).
\[\left( d \right)\left( \begin{matrix}
1 & 1 \\
-1 & 1 \\
\end{matrix} \right)\text{ is an element of G}\]
When comparing this, we have,
\[\left( \begin{matrix}
1 & 1 \\
-1 & 1 \\
\end{matrix} \right)=\left( \begin{matrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta \\
\end{matrix} \right)\]
\[\Rightarrow 1=\cos \theta \]
\[\Rightarrow \cos \theta =1\]
\[\Rightarrow \theta ={{\cos }^{-1}}\left( 1 \right)\]
\[\Rightarrow \theta ={{0}^{\circ }}\]
Now, \[\sin \theta =\sin 0=0.\]
But the entry corresponding to \[\sin \theta =1\] in the above comparison, so \[0\ne 1.\] \[\left( \begin{matrix}
1 & 1 \\
-1 & 1 \\
\end{matrix} \right)\] cannot be an element of G.
Hence, option (d) is wrong.
Therefore, the correct option is (a).
Note:
Students can have confusion at the step where option (c) is considered. See, if G is a group and \[a\in G\] then \[-a\in G\] also any scalar multiplication \[Ra\in G\] means if \[\left( \begin{matrix}
\dfrac{1}{2} & \dfrac{\sqrt{3}}{2} \\
\dfrac{-\sqrt{3}}{2} & \dfrac{1}{2} \\
\end{matrix} \right)\in G\Rightarrow \left( \begin{matrix}
\dfrac{1}{2} & \dfrac{-\sqrt{3}}{2} \\
\dfrac{\sqrt{3}}{2} & \dfrac{1}{2} \\
\end{matrix} \right)\] also belongs to G.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

