
If the second, third and fourth terms in the expansion of ${\left( {x + a} \right)^n}$ are 240, 720, 1080 respectively, then the value of n is
A) 15
B) 20
C) 10
D) 5
Answer
597.9k+ views
Hint- Here we will proceed by using the concept of binomial expansion that is ${\left( {x + y} \right)^n} = \sum\limits_{k = 0}^n {\left( {_k^n} \right)} {x^{n - k}}{y^k} = \sum\limits_{k = 0}^n {\left( {_k^n} \right){x^k}} {y^{n - k}}$.
Complete step-by-step answer:
We know that general term of ${\left( {a + b} \right)^n}$ is
${T^{r + 1}} = {}^n{C_r}{\left( a \right)^{n + r}}{\left( b \right)^r}$….. (1)
Given that second term of ${\left( {x + b} \right)^n}$ is 240
That is, $
{T_2} = 240 \\
{T_{1 + 1}} = 240 \\
$
Putting $r = 1$, $a = x$ and $b = a$
${T_{r + 1}} = {}^n{C_r}{\left( x \right)^{n - 1}}{\left( a \right)^1}$
$\Rightarrow {T_2} = {}^n{C_1}{x^{n - 1}}a$
$\Rightarrow 240 = {}^n{C_1}{x^{n - 1}}a$ ….. (2)
Third term of ${\left( {x + a} \right)^n}$ is 720
That is ${T_3} = 720$
$\Rightarrow {T_{2 + 1}} = 720$
Putting $r = 2$, $a = x$ and $b = a$ in (1)
${T_{2 + 1}} = {}^n{C_2}{\left( x \right)^{n - 2}}.{\left( b \right)^2}$
$\Rightarrow 720 = {}^n{C_2}{x^{n - 2}}{a^2}$ ….. (3)
Fourth term of ${\left( {x + a} \right)^n}$ is 1080
That is ${T_4} = 1080$
${T_{3 + 1}} = 1080$
Putting $r = 3$, $a = x$ and $b = a$ in (1)
${T_{3 + 1}} = {}^n{C_r}{x^{n - 3}}{a^3}$
$\Rightarrow 1080 = {}^n{C_3}{x^{n - 3}}{a^3}$ …. (4)
Also,
Dividing $\left( 3 \right)$by $\left( 2 \right)$
$\dfrac{{720}}{{240}} = \dfrac{{{}^n{C_2}{x^{n - 2}}{a^2}}}{{{}^n{C_1}{x^{n - 1}}a}}$
$
\Rightarrow 3 = \dfrac{{{}^n{C_2}}}{{{}^n{C_1}}} \times \dfrac{{{x^{n - 2}}}}{{{x^{n - 1}}}} \times \dfrac{{{a^2}}}{a} \\
\Rightarrow 3 = \dfrac{{\dfrac{{n!}}{{2!\left( {n - 2} \right)!}}}}{{\dfrac{{n!}}{{1!\left( {n - 1} \right)!}}}} \times {x^{n - 2 - \left( {n - 1} \right) }\times a} \\
$
$\Rightarrow 3 = \dfrac{{n!}}{{2!\left( {n - 2} \right)!}} \times \dfrac{{1!\left( {n - 1} \right)!}}{{n!}} \times {x^{n - 2 - n + 1}} \times a$
$\Rightarrow 3 = \dfrac{{n!}}{{2\left( {n - 2} \right)!}} \times \dfrac{{1\left( {n - 1} \right)\left( {n - 2} \right)!}}{{n!}} \times {x^{ - 1}} \times a$
$\Rightarrow 3 = \dfrac{{\left( {n - 1} \right)}}{2} \times \dfrac{a}{x}$
By cross multiplication, we will get
$\Rightarrow 3 \times 2 = \left( {n - 1} \right) \times \dfrac{a}{x}$
$\Rightarrow 6 = \left( {n - 1} \right) \times \dfrac{a}{x}$
$\Rightarrow \dfrac{6}{{n - 1}} = \dfrac{a}{x}$ ….. (A)
Now dividing (4) and (3)
$\Rightarrow \dfrac{{1080}}{{720}} = \dfrac{{{}^n{C_3}{x^{n - 3}}{a^3}}}{{{}^n{C_2}{x^{n - 2}}{a^2}}}$
$\Rightarrow \dfrac{3}{2} = \dfrac{{{}^n{C_3}}}{{{}^n{C_2}}} \times \dfrac{{{x^{n - 3}}}}{{{x^{n - 2}}}} \times \dfrac{{{a^3}}}{{{a^2}}}$
$ \Rightarrow \dfrac{3}{2} = \dfrac{\dfrac{n!}{3!\left( {n - 3} \right)!}}{{\dfrac{{n!}}{{2\left( {n - 2} \right)!}}}} \times {x^{{n - 3} - {n - 2}}} \times {a^{3 - 2}} \\
\Rightarrow \dfrac{3}{2} = \dfrac{{n!}}{{3!\left( {n - 3} \right)!}} \times \dfrac{{2!\left( {n - 2} \right)!}}{{n!}} \times {x^{ - 1}} \times {a^1} \\
$
$
\Rightarrow \dfrac{3}{2} = \dfrac{{n!}}{{3\left( 2 \right)!\left( {n - 3} \right)!}} \times \dfrac{{2!\left( {n - 2} \right)\left( {n - 3} \right)!}}{{n!}} \times \dfrac{a}{x} \\
\Rightarrow \dfrac{3}{2} = \dfrac{{\left( {n - 2} \right)}}{3} \times \dfrac{a}{x} \\
$
$\Rightarrow \dfrac{9}{{2\left( {n - 2} \right)}} = \dfrac{a}{x}$ …. (B)
Now our equations are
$\dfrac{6}{{n - 1}} = \dfrac{a}{x}$ …. (A)
$\dfrac{9}{{2\left( {n - 2} \right)}} = \dfrac{a}{x}$ ….. (B)
Equating (A) and (B)
$\Rightarrow \dfrac{9}{{2\left( {n - 2} \right)}} = \dfrac{6}{{n - 1}}$
By cross multiply, we will get
$\Rightarrow 9 \times \left( {n - 1} \right) = 6 \times 2\left( {n - 2} \right)$
$\Rightarrow 9n - 9 = 12n - 24$
$
\Rightarrow 15 = 3n \\
\Rightarrow \dfrac{{15}}{3} = n \\
\Rightarrow 5 = n \\
\Rightarrow n = 5 \\
$
Hence, option D is the correct answer.
Note- In this question it should be noted that we use the basics of binomial expansion, elementary algebra, the binomial theorem describes the algebraic expansion of powers of a binomial. Also this theorem specifies the expansion of any power ${\left( {a + b} \right)^m}$ of a binomial $\left( {a + b} \right)$ as a certain sum of products ${a^i}{b^i}$, such as ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$. By this method we can easily solve this question.
Complete step-by-step answer:
We know that general term of ${\left( {a + b} \right)^n}$ is
${T^{r + 1}} = {}^n{C_r}{\left( a \right)^{n + r}}{\left( b \right)^r}$….. (1)
Given that second term of ${\left( {x + b} \right)^n}$ is 240
That is, $
{T_2} = 240 \\
{T_{1 + 1}} = 240 \\
$
Putting $r = 1$, $a = x$ and $b = a$
${T_{r + 1}} = {}^n{C_r}{\left( x \right)^{n - 1}}{\left( a \right)^1}$
$\Rightarrow {T_2} = {}^n{C_1}{x^{n - 1}}a$
$\Rightarrow 240 = {}^n{C_1}{x^{n - 1}}a$ ….. (2)
Third term of ${\left( {x + a} \right)^n}$ is 720
That is ${T_3} = 720$
$\Rightarrow {T_{2 + 1}} = 720$
Putting $r = 2$, $a = x$ and $b = a$ in (1)
${T_{2 + 1}} = {}^n{C_2}{\left( x \right)^{n - 2}}.{\left( b \right)^2}$
$\Rightarrow 720 = {}^n{C_2}{x^{n - 2}}{a^2}$ ….. (3)
Fourth term of ${\left( {x + a} \right)^n}$ is 1080
That is ${T_4} = 1080$
${T_{3 + 1}} = 1080$
Putting $r = 3$, $a = x$ and $b = a$ in (1)
${T_{3 + 1}} = {}^n{C_r}{x^{n - 3}}{a^3}$
$\Rightarrow 1080 = {}^n{C_3}{x^{n - 3}}{a^3}$ …. (4)
Also,
Dividing $\left( 3 \right)$by $\left( 2 \right)$
$\dfrac{{720}}{{240}} = \dfrac{{{}^n{C_2}{x^{n - 2}}{a^2}}}{{{}^n{C_1}{x^{n - 1}}a}}$
$
\Rightarrow 3 = \dfrac{{{}^n{C_2}}}{{{}^n{C_1}}} \times \dfrac{{{x^{n - 2}}}}{{{x^{n - 1}}}} \times \dfrac{{{a^2}}}{a} \\
\Rightarrow 3 = \dfrac{{\dfrac{{n!}}{{2!\left( {n - 2} \right)!}}}}{{\dfrac{{n!}}{{1!\left( {n - 1} \right)!}}}} \times {x^{n - 2 - \left( {n - 1} \right) }\times a} \\
$
$\Rightarrow 3 = \dfrac{{n!}}{{2!\left( {n - 2} \right)!}} \times \dfrac{{1!\left( {n - 1} \right)!}}{{n!}} \times {x^{n - 2 - n + 1}} \times a$
$\Rightarrow 3 = \dfrac{{n!}}{{2\left( {n - 2} \right)!}} \times \dfrac{{1\left( {n - 1} \right)\left( {n - 2} \right)!}}{{n!}} \times {x^{ - 1}} \times a$
$\Rightarrow 3 = \dfrac{{\left( {n - 1} \right)}}{2} \times \dfrac{a}{x}$
By cross multiplication, we will get
$\Rightarrow 3 \times 2 = \left( {n - 1} \right) \times \dfrac{a}{x}$
$\Rightarrow 6 = \left( {n - 1} \right) \times \dfrac{a}{x}$
$\Rightarrow \dfrac{6}{{n - 1}} = \dfrac{a}{x}$ ….. (A)
Now dividing (4) and (3)
$\Rightarrow \dfrac{{1080}}{{720}} = \dfrac{{{}^n{C_3}{x^{n - 3}}{a^3}}}{{{}^n{C_2}{x^{n - 2}}{a^2}}}$
$\Rightarrow \dfrac{3}{2} = \dfrac{{{}^n{C_3}}}{{{}^n{C_2}}} \times \dfrac{{{x^{n - 3}}}}{{{x^{n - 2}}}} \times \dfrac{{{a^3}}}{{{a^2}}}$
$ \Rightarrow \dfrac{3}{2} = \dfrac{\dfrac{n!}{3!\left( {n - 3} \right)!}}{{\dfrac{{n!}}{{2\left( {n - 2} \right)!}}}} \times {x^{{n - 3} - {n - 2}}} \times {a^{3 - 2}} \\
\Rightarrow \dfrac{3}{2} = \dfrac{{n!}}{{3!\left( {n - 3} \right)!}} \times \dfrac{{2!\left( {n - 2} \right)!}}{{n!}} \times {x^{ - 1}} \times {a^1} \\
$
$
\Rightarrow \dfrac{3}{2} = \dfrac{{n!}}{{3\left( 2 \right)!\left( {n - 3} \right)!}} \times \dfrac{{2!\left( {n - 2} \right)\left( {n - 3} \right)!}}{{n!}} \times \dfrac{a}{x} \\
\Rightarrow \dfrac{3}{2} = \dfrac{{\left( {n - 2} \right)}}{3} \times \dfrac{a}{x} \\
$
$\Rightarrow \dfrac{9}{{2\left( {n - 2} \right)}} = \dfrac{a}{x}$ …. (B)
Now our equations are
$\dfrac{6}{{n - 1}} = \dfrac{a}{x}$ …. (A)
$\dfrac{9}{{2\left( {n - 2} \right)}} = \dfrac{a}{x}$ ….. (B)
Equating (A) and (B)
$\Rightarrow \dfrac{9}{{2\left( {n - 2} \right)}} = \dfrac{6}{{n - 1}}$
By cross multiply, we will get
$\Rightarrow 9 \times \left( {n - 1} \right) = 6 \times 2\left( {n - 2} \right)$
$\Rightarrow 9n - 9 = 12n - 24$
$
\Rightarrow 15 = 3n \\
\Rightarrow \dfrac{{15}}{3} = n \\
\Rightarrow 5 = n \\
\Rightarrow n = 5 \\
$
Hence, option D is the correct answer.
Note- In this question it should be noted that we use the basics of binomial expansion, elementary algebra, the binomial theorem describes the algebraic expansion of powers of a binomial. Also this theorem specifies the expansion of any power ${\left( {a + b} \right)^m}$ of a binomial $\left( {a + b} \right)$ as a certain sum of products ${a^i}{b^i}$, such as ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$. By this method we can easily solve this question.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

