
If the second, third and fourth terms in the expansion of ${\left( {x + a} \right)^n}$ are 240, 720, 1080 respectively, then the value of n is
A) 15
B) 20
C) 10
D) 5
Answer
515.7k+ views
Hint- Here we will proceed by using the concept of binomial expansion that is ${\left( {x + y} \right)^n} = \sum\limits_{k = 0}^n {\left( {_k^n} \right)} {x^{n - k}}{y^k} = \sum\limits_{k = 0}^n {\left( {_k^n} \right){x^k}} {y^{n - k}}$.
Complete step-by-step answer:
We know that general term of ${\left( {a + b} \right)^n}$ is
${T^{r + 1}} = {}^n{C_r}{\left( a \right)^{n + r}}{\left( b \right)^r}$….. (1)
Given that second term of ${\left( {x + b} \right)^n}$ is 240
That is, $
{T_2} = 240 \\
{T_{1 + 1}} = 240 \\
$
Putting $r = 1$, $a = x$ and $b = a$
${T_{r + 1}} = {}^n{C_r}{\left( x \right)^{n - 1}}{\left( a \right)^1}$
$\Rightarrow {T_2} = {}^n{C_1}{x^{n - 1}}a$
$\Rightarrow 240 = {}^n{C_1}{x^{n - 1}}a$ ….. (2)
Third term of ${\left( {x + a} \right)^n}$ is 720
That is ${T_3} = 720$
$\Rightarrow {T_{2 + 1}} = 720$
Putting $r = 2$, $a = x$ and $b = a$ in (1)
${T_{2 + 1}} = {}^n{C_2}{\left( x \right)^{n - 2}}.{\left( b \right)^2}$
$\Rightarrow 720 = {}^n{C_2}{x^{n - 2}}{a^2}$ ….. (3)
Fourth term of ${\left( {x + a} \right)^n}$ is 1080
That is ${T_4} = 1080$
${T_{3 + 1}} = 1080$
Putting $r = 3$, $a = x$ and $b = a$ in (1)
${T_{3 + 1}} = {}^n{C_r}{x^{n - 3}}{a^3}$
$\Rightarrow 1080 = {}^n{C_3}{x^{n - 3}}{a^3}$ …. (4)
Also,
Dividing $\left( 3 \right)$by $\left( 2 \right)$
$\dfrac{{720}}{{240}} = \dfrac{{{}^n{C_2}{x^{n - 2}}{a^2}}}{{{}^n{C_1}{x^{n - 1}}a}}$
$
\Rightarrow 3 = \dfrac{{{}^n{C_2}}}{{{}^n{C_1}}} \times \dfrac{{{x^{n - 2}}}}{{{x^{n - 1}}}} \times \dfrac{{{a^2}}}{a} \\
\Rightarrow 3 = \dfrac{{\dfrac{{n!}}{{2!\left( {n - 2} \right)!}}}}{{\dfrac{{n!}}{{1!\left( {n - 1} \right)!}}}} \times {x^{n - 2 - \left( {n - 1} \right) }\times a} \\
$
$\Rightarrow 3 = \dfrac{{n!}}{{2!\left( {n - 2} \right)!}} \times \dfrac{{1!\left( {n - 1} \right)!}}{{n!}} \times {x^{n - 2 - n + 1}} \times a$
$\Rightarrow 3 = \dfrac{{n!}}{{2\left( {n - 2} \right)!}} \times \dfrac{{1\left( {n - 1} \right)\left( {n - 2} \right)!}}{{n!}} \times {x^{ - 1}} \times a$
$\Rightarrow 3 = \dfrac{{\left( {n - 1} \right)}}{2} \times \dfrac{a}{x}$
By cross multiplication, we will get
$\Rightarrow 3 \times 2 = \left( {n - 1} \right) \times \dfrac{a}{x}$
$\Rightarrow 6 = \left( {n - 1} \right) \times \dfrac{a}{x}$
$\Rightarrow \dfrac{6}{{n - 1}} = \dfrac{a}{x}$ ….. (A)
Now dividing (4) and (3)
$\Rightarrow \dfrac{{1080}}{{720}} = \dfrac{{{}^n{C_3}{x^{n - 3}}{a^3}}}{{{}^n{C_2}{x^{n - 2}}{a^2}}}$
$\Rightarrow \dfrac{3}{2} = \dfrac{{{}^n{C_3}}}{{{}^n{C_2}}} \times \dfrac{{{x^{n - 3}}}}{{{x^{n - 2}}}} \times \dfrac{{{a^3}}}{{{a^2}}}$
$ \Rightarrow \dfrac{3}{2} = \dfrac{\dfrac{n!}{3!\left( {n - 3} \right)!}}{{\dfrac{{n!}}{{2\left( {n - 2} \right)!}}}} \times {x^{{n - 3} - {n - 2}}} \times {a^{3 - 2}} \\
\Rightarrow \dfrac{3}{2} = \dfrac{{n!}}{{3!\left( {n - 3} \right)!}} \times \dfrac{{2!\left( {n - 2} \right)!}}{{n!}} \times {x^{ - 1}} \times {a^1} \\
$
$
\Rightarrow \dfrac{3}{2} = \dfrac{{n!}}{{3\left( 2 \right)!\left( {n - 3} \right)!}} \times \dfrac{{2!\left( {n - 2} \right)\left( {n - 3} \right)!}}{{n!}} \times \dfrac{a}{x} \\
\Rightarrow \dfrac{3}{2} = \dfrac{{\left( {n - 2} \right)}}{3} \times \dfrac{a}{x} \\
$
$\Rightarrow \dfrac{9}{{2\left( {n - 2} \right)}} = \dfrac{a}{x}$ …. (B)
Now our equations are
$\dfrac{6}{{n - 1}} = \dfrac{a}{x}$ …. (A)
$\dfrac{9}{{2\left( {n - 2} \right)}} = \dfrac{a}{x}$ ….. (B)
Equating (A) and (B)
$\Rightarrow \dfrac{9}{{2\left( {n - 2} \right)}} = \dfrac{6}{{n - 1}}$
By cross multiply, we will get
$\Rightarrow 9 \times \left( {n - 1} \right) = 6 \times 2\left( {n - 2} \right)$
$\Rightarrow 9n - 9 = 12n - 24$
$
\Rightarrow 15 = 3n \\
\Rightarrow \dfrac{{15}}{3} = n \\
\Rightarrow 5 = n \\
\Rightarrow n = 5 \\
$
Hence, option D is the correct answer.
Note- In this question it should be noted that we use the basics of binomial expansion, elementary algebra, the binomial theorem describes the algebraic expansion of powers of a binomial. Also this theorem specifies the expansion of any power ${\left( {a + b} \right)^m}$ of a binomial $\left( {a + b} \right)$ as a certain sum of products ${a^i}{b^i}$, such as ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$. By this method we can easily solve this question.
Complete step-by-step answer:
We know that general term of ${\left( {a + b} \right)^n}$ is
${T^{r + 1}} = {}^n{C_r}{\left( a \right)^{n + r}}{\left( b \right)^r}$….. (1)
Given that second term of ${\left( {x + b} \right)^n}$ is 240
That is, $
{T_2} = 240 \\
{T_{1 + 1}} = 240 \\
$
Putting $r = 1$, $a = x$ and $b = a$
${T_{r + 1}} = {}^n{C_r}{\left( x \right)^{n - 1}}{\left( a \right)^1}$
$\Rightarrow {T_2} = {}^n{C_1}{x^{n - 1}}a$
$\Rightarrow 240 = {}^n{C_1}{x^{n - 1}}a$ ….. (2)
Third term of ${\left( {x + a} \right)^n}$ is 720
That is ${T_3} = 720$
$\Rightarrow {T_{2 + 1}} = 720$
Putting $r = 2$, $a = x$ and $b = a$ in (1)
${T_{2 + 1}} = {}^n{C_2}{\left( x \right)^{n - 2}}.{\left( b \right)^2}$
$\Rightarrow 720 = {}^n{C_2}{x^{n - 2}}{a^2}$ ….. (3)
Fourth term of ${\left( {x + a} \right)^n}$ is 1080
That is ${T_4} = 1080$
${T_{3 + 1}} = 1080$
Putting $r = 3$, $a = x$ and $b = a$ in (1)
${T_{3 + 1}} = {}^n{C_r}{x^{n - 3}}{a^3}$
$\Rightarrow 1080 = {}^n{C_3}{x^{n - 3}}{a^3}$ …. (4)
Also,
Dividing $\left( 3 \right)$by $\left( 2 \right)$
$\dfrac{{720}}{{240}} = \dfrac{{{}^n{C_2}{x^{n - 2}}{a^2}}}{{{}^n{C_1}{x^{n - 1}}a}}$
$
\Rightarrow 3 = \dfrac{{{}^n{C_2}}}{{{}^n{C_1}}} \times \dfrac{{{x^{n - 2}}}}{{{x^{n - 1}}}} \times \dfrac{{{a^2}}}{a} \\
\Rightarrow 3 = \dfrac{{\dfrac{{n!}}{{2!\left( {n - 2} \right)!}}}}{{\dfrac{{n!}}{{1!\left( {n - 1} \right)!}}}} \times {x^{n - 2 - \left( {n - 1} \right) }\times a} \\
$
$\Rightarrow 3 = \dfrac{{n!}}{{2!\left( {n - 2} \right)!}} \times \dfrac{{1!\left( {n - 1} \right)!}}{{n!}} \times {x^{n - 2 - n + 1}} \times a$
$\Rightarrow 3 = \dfrac{{n!}}{{2\left( {n - 2} \right)!}} \times \dfrac{{1\left( {n - 1} \right)\left( {n - 2} \right)!}}{{n!}} \times {x^{ - 1}} \times a$
$\Rightarrow 3 = \dfrac{{\left( {n - 1} \right)}}{2} \times \dfrac{a}{x}$
By cross multiplication, we will get
$\Rightarrow 3 \times 2 = \left( {n - 1} \right) \times \dfrac{a}{x}$
$\Rightarrow 6 = \left( {n - 1} \right) \times \dfrac{a}{x}$
$\Rightarrow \dfrac{6}{{n - 1}} = \dfrac{a}{x}$ ….. (A)
Now dividing (4) and (3)
$\Rightarrow \dfrac{{1080}}{{720}} = \dfrac{{{}^n{C_3}{x^{n - 3}}{a^3}}}{{{}^n{C_2}{x^{n - 2}}{a^2}}}$
$\Rightarrow \dfrac{3}{2} = \dfrac{{{}^n{C_3}}}{{{}^n{C_2}}} \times \dfrac{{{x^{n - 3}}}}{{{x^{n - 2}}}} \times \dfrac{{{a^3}}}{{{a^2}}}$
$ \Rightarrow \dfrac{3}{2} = \dfrac{\dfrac{n!}{3!\left( {n - 3} \right)!}}{{\dfrac{{n!}}{{2\left( {n - 2} \right)!}}}} \times {x^{{n - 3} - {n - 2}}} \times {a^{3 - 2}} \\
\Rightarrow \dfrac{3}{2} = \dfrac{{n!}}{{3!\left( {n - 3} \right)!}} \times \dfrac{{2!\left( {n - 2} \right)!}}{{n!}} \times {x^{ - 1}} \times {a^1} \\
$
$
\Rightarrow \dfrac{3}{2} = \dfrac{{n!}}{{3\left( 2 \right)!\left( {n - 3} \right)!}} \times \dfrac{{2!\left( {n - 2} \right)\left( {n - 3} \right)!}}{{n!}} \times \dfrac{a}{x} \\
\Rightarrow \dfrac{3}{2} = \dfrac{{\left( {n - 2} \right)}}{3} \times \dfrac{a}{x} \\
$
$\Rightarrow \dfrac{9}{{2\left( {n - 2} \right)}} = \dfrac{a}{x}$ …. (B)
Now our equations are
$\dfrac{6}{{n - 1}} = \dfrac{a}{x}$ …. (A)
$\dfrac{9}{{2\left( {n - 2} \right)}} = \dfrac{a}{x}$ ….. (B)
Equating (A) and (B)
$\Rightarrow \dfrac{9}{{2\left( {n - 2} \right)}} = \dfrac{6}{{n - 1}}$
By cross multiply, we will get
$\Rightarrow 9 \times \left( {n - 1} \right) = 6 \times 2\left( {n - 2} \right)$
$\Rightarrow 9n - 9 = 12n - 24$
$
\Rightarrow 15 = 3n \\
\Rightarrow \dfrac{{15}}{3} = n \\
\Rightarrow 5 = n \\
\Rightarrow n = 5 \\
$
Hence, option D is the correct answer.
Note- In this question it should be noted that we use the basics of binomial expansion, elementary algebra, the binomial theorem describes the algebraic expansion of powers of a binomial. Also this theorem specifies the expansion of any power ${\left( {a + b} \right)^m}$ of a binomial $\left( {a + b} \right)$ as a certain sum of products ${a^i}{b^i}$, such as ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$. By this method we can easily solve this question.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
