
If the second term of the expansion of \[{{\left[ {{a}^{\dfrac{1}{13}}}+\dfrac{a}{\sqrt{{{a}^{-1}}}} \right]}^{n}}\] is \[14{{a}^{\dfrac{5}{2}}}\] then the value of \[\dfrac{{}^{n}{{C}_{3}}}{{}^{n}{{C}_{2}}}\] is
\[\begin{align}
& \text{A}.\text{ 4} \\
& \text{B}.\text{ 3} \\
& \text{C}.\text{ 12} \\
& \text{D}.\text{ 6} \\
\end{align}\]
Answer
577.2k+ views
Hint: To solve this question, we will use 2 concepts. First the combination value \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\] and for the expansion of type \[{{\left( a+b \right)}^{n}}\] the general term \[T_{r+1}\] is given as \[{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}\]
Complete step-by-step solution:
Given that second term of expansion of
\[{{\left[ {{a}^{\dfrac{1}{13}}}+\dfrac{a}{\sqrt{{{a}^{-1}}}} \right]}^{n}}\] is \[14{{a}^{\dfrac{5}{2}}}\]
Consider \[{{\left[ {{a}^{\dfrac{1}{13}}}+\dfrac{a}{\sqrt{{{a}^{-1}}}} \right]}^{n}}\]
\[\Rightarrow {{\left[ {{a}^{\dfrac{1}{13}}}+\dfrac{{{a}^{1}}}{{{a}^{\dfrac{-1}{2}}}} \right]}^{n}}={{\left[ {{a}^{\dfrac{1}{13}}}+{{a}^{\dfrac{3}{2}}} \right]}^{n}}\]
Then, if the general term of an expansion $T_{r+1}$ is $T_{r+1}={}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}$ where, \[{{\left( a+b \right)}^{n}}\] expansion is taken. Then, general term for expansion of \[{{\left[ {{a}^{\dfrac{1}{13}}}+{{a}^{\dfrac{3}{2}}} \right]}^{n}}\] is \[Tr+1={}^{n}{{C}_{r}}{{a}^{\dfrac{n-r}{13}}}{{a}^{\dfrac{3r}{2}}}\]
Given that \[{{\text{T}}_{2}}\left( \text{second term} \right)=14{{a}^{\dfrac{5}{2}}}\]
Then as \[\text{r=1, }{{\text{T}}_{2}}={}^{n}{{C}_{1}}{{a}^{\dfrac{n-r}{13}}}{{a}^{\dfrac{3r}{2}}}=14{{a}^{\dfrac{5}{2}}}\]
\[\begin{align}
& \Rightarrow {}^{n}{{\text{C}}_{1}}{{\text{a}}^{\dfrac{n-1}{13}}}{{\text{a}}^{\dfrac{3}{2}}}=14{{\text{a}}^{\dfrac{5}{2}}} \\
& \Rightarrow \text{n}{{\text{a}}^{\dfrac{n-1}{13}}}{{\text{a}}^{\dfrac{3}{2}}}=14{{\text{a}}^{\dfrac{5}{2}}} \\
\end{align}\]
Now, taking powers of a together, we get,
\[\begin{align}
& \Rightarrow n{{a}^{\dfrac{39-2n-2}{26}}}=n{{a}^{\dfrac{37+2n}{26}}}=14{{a}^{\dfrac{5}{2}}} \\
& \Rightarrow n{{a}^{\dfrac{37+2n}{26}}}=14{{a}^{\dfrac{5}{2}}} \\
\end{align}\]
Taking 'a' on same side, we get:
\[\begin{align}
& 14=n {a}^{{\dfrac{37+2n}{26}}-{\dfrac{5}{2}}} \\
& 14=n{{a}^{\dfrac{37+2n-65}{26}}} \\
& 14=n{{a}^{\dfrac{2n-28}{26}}} \\
\end{align}\]
Taking 2 common on powers of 'a' we get:
\[14=n{{a}^{\dfrac{n-14}{13}}}\]
Comparing both sides of the equation we see that, there is no 'a' on the left-hand side of the above equation.
\[\Rightarrow \text{ power of a=0 then }{{\text{a}}^{o}}=1\]
Hence, \[\begin{align}
& \dfrac{n-14}{13}=0\Rightarrow n-14=0 \\
& \Rightarrow n=14 \\
\end{align}\]
So, value of n = 14.
Now, finally we have to calculate \[\dfrac{{}^{n}{{C}_{3}}}{{}^{n}{{C}_{2}}}\]
\[\Rightarrow \dfrac{{}^{14}{{C}_{3}}}{{}^{14}{{C}_{2}}}\]
Now, we will use formula of \[{}^{n}{{C}_{r}}\] given as
\[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]
Using the formula stated above, we get
\[\begin{align}
& {}^{14}{{C}_{3}}=\dfrac{14!}{3!\left( 14-3 \right)!} \\
& \Rightarrow {}^{14}{{C}_{3}}=\dfrac{14!}{3!\text{ }\times \text{ }11!} \\
\end{align}\]
Opening on the factorial on to the right, we get
\[{}^{14}{{C}_{3}}=\dfrac{14\times 13\times 12\times 11!}{3\times 2\times 1\times 11!}\]
Cancelling 11! on both sides we have,
\[{}^{14}{{C}_{3}}=\dfrac{14\times 13\times 12}{3\times 2}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
Similarly, we will calculate ${}^{14}{{C}_{2}}$ using formula stated above,
Then,
\[\begin{align}
& {}^{14}{{C}_{2}}=\dfrac{14\times 13\times 12!}{\left( 14-2 \right)!\left( 2 \right)!} \\
& \Rightarrow \dfrac{14\times 13\times 12!}{12!\times 2\times 1} \\
\end{align}\]
Cancelling 12! we get,
\[{}^{14}{{C}_{2}}=\dfrac{14\times 13}{2\times 1}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)}\]
Now from equation (i) and (ii) we get:
\[\Rightarrow \dfrac{{}^{14}{{C}_{3}}}{{}^{14}{{C}_{2}}}=\dfrac{14\times 13\times 12}{3\times 2}\times \dfrac{2\times 1}{14\times 13}\]
Cancelling common terms we get:
\[\Rightarrow \dfrac{{}^{14}{{C}_{3}}}{{}^{14}{{C}_{2}}}=\dfrac{12}{3}=4\] which is option A.
Note: The possibility of error can be at the point where we have to determine the value of n. Always in these types of questions, try to assemble the variable used at one side of the equation. Then, we can easily compare both sides of the equation to get an answer. Also for the second term of the expansion go for comparing terms of a and b from general term Tr+1 in the expansion of a and b.
Complete step-by-step solution:
Given that second term of expansion of
\[{{\left[ {{a}^{\dfrac{1}{13}}}+\dfrac{a}{\sqrt{{{a}^{-1}}}} \right]}^{n}}\] is \[14{{a}^{\dfrac{5}{2}}}\]
Consider \[{{\left[ {{a}^{\dfrac{1}{13}}}+\dfrac{a}{\sqrt{{{a}^{-1}}}} \right]}^{n}}\]
\[\Rightarrow {{\left[ {{a}^{\dfrac{1}{13}}}+\dfrac{{{a}^{1}}}{{{a}^{\dfrac{-1}{2}}}} \right]}^{n}}={{\left[ {{a}^{\dfrac{1}{13}}}+{{a}^{\dfrac{3}{2}}} \right]}^{n}}\]
Then, if the general term of an expansion $T_{r+1}$ is $T_{r+1}={}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}$ where, \[{{\left( a+b \right)}^{n}}\] expansion is taken. Then, general term for expansion of \[{{\left[ {{a}^{\dfrac{1}{13}}}+{{a}^{\dfrac{3}{2}}} \right]}^{n}}\] is \[Tr+1={}^{n}{{C}_{r}}{{a}^{\dfrac{n-r}{13}}}{{a}^{\dfrac{3r}{2}}}\]
Given that \[{{\text{T}}_{2}}\left( \text{second term} \right)=14{{a}^{\dfrac{5}{2}}}\]
Then as \[\text{r=1, }{{\text{T}}_{2}}={}^{n}{{C}_{1}}{{a}^{\dfrac{n-r}{13}}}{{a}^{\dfrac{3r}{2}}}=14{{a}^{\dfrac{5}{2}}}\]
\[\begin{align}
& \Rightarrow {}^{n}{{\text{C}}_{1}}{{\text{a}}^{\dfrac{n-1}{13}}}{{\text{a}}^{\dfrac{3}{2}}}=14{{\text{a}}^{\dfrac{5}{2}}} \\
& \Rightarrow \text{n}{{\text{a}}^{\dfrac{n-1}{13}}}{{\text{a}}^{\dfrac{3}{2}}}=14{{\text{a}}^{\dfrac{5}{2}}} \\
\end{align}\]
Now, taking powers of a together, we get,
\[\begin{align}
& \Rightarrow n{{a}^{\dfrac{39-2n-2}{26}}}=n{{a}^{\dfrac{37+2n}{26}}}=14{{a}^{\dfrac{5}{2}}} \\
& \Rightarrow n{{a}^{\dfrac{37+2n}{26}}}=14{{a}^{\dfrac{5}{2}}} \\
\end{align}\]
Taking 'a' on same side, we get:
\[\begin{align}
& 14=n {a}^{{\dfrac{37+2n}{26}}-{\dfrac{5}{2}}} \\
& 14=n{{a}^{\dfrac{37+2n-65}{26}}} \\
& 14=n{{a}^{\dfrac{2n-28}{26}}} \\
\end{align}\]
Taking 2 common on powers of 'a' we get:
\[14=n{{a}^{\dfrac{n-14}{13}}}\]
Comparing both sides of the equation we see that, there is no 'a' on the left-hand side of the above equation.
\[\Rightarrow \text{ power of a=0 then }{{\text{a}}^{o}}=1\]
Hence, \[\begin{align}
& \dfrac{n-14}{13}=0\Rightarrow n-14=0 \\
& \Rightarrow n=14 \\
\end{align}\]
So, value of n = 14.
Now, finally we have to calculate \[\dfrac{{}^{n}{{C}_{3}}}{{}^{n}{{C}_{2}}}\]
\[\Rightarrow \dfrac{{}^{14}{{C}_{3}}}{{}^{14}{{C}_{2}}}\]
Now, we will use formula of \[{}^{n}{{C}_{r}}\] given as
\[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]
Using the formula stated above, we get
\[\begin{align}
& {}^{14}{{C}_{3}}=\dfrac{14!}{3!\left( 14-3 \right)!} \\
& \Rightarrow {}^{14}{{C}_{3}}=\dfrac{14!}{3!\text{ }\times \text{ }11!} \\
\end{align}\]
Opening on the factorial on to the right, we get
\[{}^{14}{{C}_{3}}=\dfrac{14\times 13\times 12\times 11!}{3\times 2\times 1\times 11!}\]
Cancelling 11! on both sides we have,
\[{}^{14}{{C}_{3}}=\dfrac{14\times 13\times 12}{3\times 2}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
Similarly, we will calculate ${}^{14}{{C}_{2}}$ using formula stated above,
Then,
\[\begin{align}
& {}^{14}{{C}_{2}}=\dfrac{14\times 13\times 12!}{\left( 14-2 \right)!\left( 2 \right)!} \\
& \Rightarrow \dfrac{14\times 13\times 12!}{12!\times 2\times 1} \\
\end{align}\]
Cancelling 12! we get,
\[{}^{14}{{C}_{2}}=\dfrac{14\times 13}{2\times 1}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)}\]
Now from equation (i) and (ii) we get:
\[\Rightarrow \dfrac{{}^{14}{{C}_{3}}}{{}^{14}{{C}_{2}}}=\dfrac{14\times 13\times 12}{3\times 2}\times \dfrac{2\times 1}{14\times 13}\]
Cancelling common terms we get:
\[\Rightarrow \dfrac{{}^{14}{{C}_{3}}}{{}^{14}{{C}_{2}}}=\dfrac{12}{3}=4\] which is option A.
Note: The possibility of error can be at the point where we have to determine the value of n. Always in these types of questions, try to assemble the variable used at one side of the equation. Then, we can easily compare both sides of the equation to get an answer. Also for the second term of the expansion go for comparing terms of a and b from general term Tr+1 in the expansion of a and b.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

