
If the relation between two inverse hyperbolic functions is given as ${{\sinh }^{-1}}\left( 2\alpha \right)={{\cosh }^{-1}}\left( \beta \right)$, then find the relation between $\alpha $ and $\beta $?
(a) ${{\alpha }^{2}}+{{\beta }^{2}}={{\alpha }^{4}}$,
(b) ${{\beta }^{2}}-4{{\alpha }^{2}}=1$,
(c) ${{\alpha }^{2}}+{{\beta }^{2}}={{\beta }^{2}}$,
(d) ${{\alpha }^{2}}={{\beta }^{2}}$.
Answer
521.7k+ views
Hint: We start solving the problem by recalling the definitions of ${{\sinh }^{-1}}\left( x \right)$ and ${{\cosh }^{-1}}\left( x \right)$. We apply these definitions to the given relation ${{\sinh }^{-1}}\left( 2\alpha \right)={{\cosh }^{-1}}\left( \beta \right)$. We then bring the terms with square root on one side and the terms with out square root on other side. We square them on both sides and make necessary calculations and repeat the previous step to get the desired solution.
Complete step by step answer:
According to the problem, we are given the relation between two inverse hyperbolic functions as ${{\sinh }^{-1}}\left( 2\alpha \right)={{\cosh }^{-1}}\left( \beta \right)$. We need to find the relation between $\alpha $ and $\beta $.
Let us recall the definitions of ${{\sinh }^{-1}}\left( x \right)$ and ${{\cosh }^{-1}}\left( x \right)$.
We know that ${{\sinh }^{-1}}\left( x \right)={{\log }_{e}}\left( x+\sqrt{{{x}^{2}}+1} \right)$ and ${{\cosh }^{-1}}\left( x \right)={{\log }_{e}}\left( x+\sqrt{{{x}^{2}}-1} \right)$. We use this in the given relation ${{\sinh }^{-1}}\left( 2\alpha \right)={{\cosh }^{-1}}\left( \beta \right)$.
$\Rightarrow {{\log }_{e}}\left( 2\alpha +\sqrt{{{\left( 2\alpha \right)}^{2}}+1} \right)={{\log }_{e}}\left( \beta +\sqrt{{{\beta }^{2}}-1} \right)$.
$\Rightarrow {{\log }_{e}}\left( 2\alpha +\sqrt{4{{\alpha }^{2}}+1} \right)={{\log }_{e}}\left( \beta +\sqrt{{{\beta }^{2}}-1} \right)$.
$\Rightarrow {{\log }_{e}}\left( 2\alpha +\sqrt{4{{\alpha }^{2}}+1} \right)-{{\log }_{e}}\left( \beta +\sqrt{{{\beta }^{2}}-1} \right)=0$.
We know that ${{\log }_{a}}x-{{\log }_{a}}y={{\log }_{a}}\dfrac{x}{y}$. For a positive value of a, x and y.
\[\Rightarrow {{\log }_{e}}\left( \dfrac{\left( 2\alpha +\sqrt{4{{\alpha }^{2}}+1} \right)}{\left( \beta +\sqrt{{{\beta }^{2}}-1} \right)} \right)=0\].
We know that if ${{\log }_{a}}x=0$, then $x=1$.
So, we get \[\dfrac{2\alpha +\sqrt{4{{\alpha }^{2}}+1}}{\beta +\sqrt{{{\beta }^{2}}-1}}=1\].
$\Rightarrow 2\alpha +\sqrt{4{{\alpha }^{2}}+1}=\beta +\sqrt{{{\beta }^{2}}-1}$.
$\Rightarrow 2\alpha -\beta =\sqrt{{{\beta }^{2}}-1}-\sqrt{4{{\alpha }^{2}}+1}$.
Now, let us square on both sides.
$\Rightarrow {{\left( 2\alpha -\beta \right)}^{2}}={{\left( \sqrt{{{\beta }^{2}}-1}-\sqrt{4{{\alpha }^{2}}+1} \right)}^{2}}$.
We know that ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$.
$\Rightarrow {{\left( 2\alpha \right)}^{2}}+{{\left( \beta \right)}^{2}}-2\left( 2\alpha \right)\left( \beta \right)={{\left( \sqrt{{{\beta }^{2}}-1} \right)}^{2}}+{{\left( \sqrt{4{{\alpha }^{2}}+1} \right)}^{2}}-2\left( \sqrt{{{\beta }^{2}}-1} \right)\left( \sqrt{4{{\alpha }^{2}}+1} \right)$.
$\Rightarrow 4{{\alpha }^{2}}+{{\beta }^{2}}-4\alpha \beta ={{\beta }^{2}}-1+4{{\alpha }^{2}}+1-2\left( \sqrt{\left( {{\beta }^{2}}-1 \right)\left( 4{{\alpha }^{2}}+1 \right)} \right)$.
$\Rightarrow 4{{\alpha }^{2}}+{{\beta }^{2}}-{{\beta }^{2}}-4{{\alpha }^{2}}-4\alpha \beta =-2\left( \sqrt{4{{\alpha }^{2}}{{\beta }^{2}}-4{{\alpha }^{2}}+{{\beta }^{2}}-1} \right)$.
$\Rightarrow -4\alpha \beta =-2\left( \sqrt{4{{\alpha }^{2}}{{\beta }^{2}}-4{{\alpha }^{2}}+{{\beta }^{2}}-1} \right)$.
$\Rightarrow 2\alpha \beta =\sqrt{4{{\alpha }^{2}}{{\beta }^{2}}-4{{\alpha }^{2}}+{{\beta }^{2}}-1}$.
Let us again square on both sides.
$\Rightarrow {{\left( 2\alpha \beta \right)}^{2}}={{\left( \sqrt{4{{\alpha }^{2}}{{\beta }^{2}}-4{{\alpha }^{2}}+{{\beta }^{2}}-1} \right)}^{2}}$.
$\Rightarrow 4{{\alpha }^{2}}{{\beta }^{2}}=4{{\alpha }^{2}}{{\beta }^{2}}-4{{\alpha }^{2}}+{{\beta }^{2}}-1$.
$\Rightarrow {{\beta }^{2}}-4{{\alpha }^{2}}=4{{\alpha }^{2}}{{\beta }^{2}}-4{{\alpha }^{2}}{{\beta }^{2}}+1$.
$\Rightarrow {{\beta }^{2}}-4{{\alpha }^{2}}=1$.
So, we have found the relation between the $\alpha $ and $\beta $ as ${{\beta }^{2}}-4{{\alpha }^{2}}=1$.
∴ The correct option for the given problem is (b).
Note:
Alternatively, we can solve this problem as shown below,
We have given ${{\sinh }^{-1}}\left( 2\alpha \right)={{\cosh }^{-1}}\left( \beta \right)$.
\[\Rightarrow 2\alpha =\sinh \left( {{\cosh }^{-1}}\left( \beta \right) \right)\].
Let us assume ${{\cosh }^{-1}}\left( \beta \right)=x$. So, we get $\cosh x=\beta $.
\[\Rightarrow 2\alpha =\sinh \left( x \right)\] ---(1).
We know that ${{\cosh }^{2}}x-{{\sinh }^{2}}x=1$.
$\Rightarrow {{\beta }^{2}}-{{\sinh }^{2}}x=1$.
$\Rightarrow {{\beta }^{2}}-1={{\sinh }^{2}}x$.
$\Rightarrow \sinh x=\sqrt{{{\beta }^{2}}-1}$. Let us substitute this in equation (1).
\[\Rightarrow 2\alpha =\sqrt{{{\beta }^{2}}-1}\].
Let us square on both sides.
\[\Rightarrow {{\left( 2\alpha \right)}^{2}}={{\left( \sqrt{{{\beta }^{2}}-1} \right)}^{2}}\].
\[\Rightarrow 4{{\alpha }^{2}}={{\beta }^{2}}-1\].
$\Rightarrow {{\beta }^{2}}-4{{\alpha }^{2}}=1$.
Complete step by step answer:
According to the problem, we are given the relation between two inverse hyperbolic functions as ${{\sinh }^{-1}}\left( 2\alpha \right)={{\cosh }^{-1}}\left( \beta \right)$. We need to find the relation between $\alpha $ and $\beta $.
Let us recall the definitions of ${{\sinh }^{-1}}\left( x \right)$ and ${{\cosh }^{-1}}\left( x \right)$.
We know that ${{\sinh }^{-1}}\left( x \right)={{\log }_{e}}\left( x+\sqrt{{{x}^{2}}+1} \right)$ and ${{\cosh }^{-1}}\left( x \right)={{\log }_{e}}\left( x+\sqrt{{{x}^{2}}-1} \right)$. We use this in the given relation ${{\sinh }^{-1}}\left( 2\alpha \right)={{\cosh }^{-1}}\left( \beta \right)$.
$\Rightarrow {{\log }_{e}}\left( 2\alpha +\sqrt{{{\left( 2\alpha \right)}^{2}}+1} \right)={{\log }_{e}}\left( \beta +\sqrt{{{\beta }^{2}}-1} \right)$.
$\Rightarrow {{\log }_{e}}\left( 2\alpha +\sqrt{4{{\alpha }^{2}}+1} \right)={{\log }_{e}}\left( \beta +\sqrt{{{\beta }^{2}}-1} \right)$.
$\Rightarrow {{\log }_{e}}\left( 2\alpha +\sqrt{4{{\alpha }^{2}}+1} \right)-{{\log }_{e}}\left( \beta +\sqrt{{{\beta }^{2}}-1} \right)=0$.
We know that ${{\log }_{a}}x-{{\log }_{a}}y={{\log }_{a}}\dfrac{x}{y}$. For a positive value of a, x and y.
\[\Rightarrow {{\log }_{e}}\left( \dfrac{\left( 2\alpha +\sqrt{4{{\alpha }^{2}}+1} \right)}{\left( \beta +\sqrt{{{\beta }^{2}}-1} \right)} \right)=0\].
We know that if ${{\log }_{a}}x=0$, then $x=1$.
So, we get \[\dfrac{2\alpha +\sqrt{4{{\alpha }^{2}}+1}}{\beta +\sqrt{{{\beta }^{2}}-1}}=1\].
$\Rightarrow 2\alpha +\sqrt{4{{\alpha }^{2}}+1}=\beta +\sqrt{{{\beta }^{2}}-1}$.
$\Rightarrow 2\alpha -\beta =\sqrt{{{\beta }^{2}}-1}-\sqrt{4{{\alpha }^{2}}+1}$.
Now, let us square on both sides.
$\Rightarrow {{\left( 2\alpha -\beta \right)}^{2}}={{\left( \sqrt{{{\beta }^{2}}-1}-\sqrt{4{{\alpha }^{2}}+1} \right)}^{2}}$.
We know that ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$.
$\Rightarrow {{\left( 2\alpha \right)}^{2}}+{{\left( \beta \right)}^{2}}-2\left( 2\alpha \right)\left( \beta \right)={{\left( \sqrt{{{\beta }^{2}}-1} \right)}^{2}}+{{\left( \sqrt{4{{\alpha }^{2}}+1} \right)}^{2}}-2\left( \sqrt{{{\beta }^{2}}-1} \right)\left( \sqrt{4{{\alpha }^{2}}+1} \right)$.
$\Rightarrow 4{{\alpha }^{2}}+{{\beta }^{2}}-4\alpha \beta ={{\beta }^{2}}-1+4{{\alpha }^{2}}+1-2\left( \sqrt{\left( {{\beta }^{2}}-1 \right)\left( 4{{\alpha }^{2}}+1 \right)} \right)$.
$\Rightarrow 4{{\alpha }^{2}}+{{\beta }^{2}}-{{\beta }^{2}}-4{{\alpha }^{2}}-4\alpha \beta =-2\left( \sqrt{4{{\alpha }^{2}}{{\beta }^{2}}-4{{\alpha }^{2}}+{{\beta }^{2}}-1} \right)$.
$\Rightarrow -4\alpha \beta =-2\left( \sqrt{4{{\alpha }^{2}}{{\beta }^{2}}-4{{\alpha }^{2}}+{{\beta }^{2}}-1} \right)$.
$\Rightarrow 2\alpha \beta =\sqrt{4{{\alpha }^{2}}{{\beta }^{2}}-4{{\alpha }^{2}}+{{\beta }^{2}}-1}$.
Let us again square on both sides.
$\Rightarrow {{\left( 2\alpha \beta \right)}^{2}}={{\left( \sqrt{4{{\alpha }^{2}}{{\beta }^{2}}-4{{\alpha }^{2}}+{{\beta }^{2}}-1} \right)}^{2}}$.
$\Rightarrow 4{{\alpha }^{2}}{{\beta }^{2}}=4{{\alpha }^{2}}{{\beta }^{2}}-4{{\alpha }^{2}}+{{\beta }^{2}}-1$.
$\Rightarrow {{\beta }^{2}}-4{{\alpha }^{2}}=4{{\alpha }^{2}}{{\beta }^{2}}-4{{\alpha }^{2}}{{\beta }^{2}}+1$.
$\Rightarrow {{\beta }^{2}}-4{{\alpha }^{2}}=1$.
So, we have found the relation between the $\alpha $ and $\beta $ as ${{\beta }^{2}}-4{{\alpha }^{2}}=1$.
∴ The correct option for the given problem is (b).
Note:
Alternatively, we can solve this problem as shown below,
We have given ${{\sinh }^{-1}}\left( 2\alpha \right)={{\cosh }^{-1}}\left( \beta \right)$.
\[\Rightarrow 2\alpha =\sinh \left( {{\cosh }^{-1}}\left( \beta \right) \right)\].
Let us assume ${{\cosh }^{-1}}\left( \beta \right)=x$. So, we get $\cosh x=\beta $.
\[\Rightarrow 2\alpha =\sinh \left( x \right)\] ---(1).
We know that ${{\cosh }^{2}}x-{{\sinh }^{2}}x=1$.
$\Rightarrow {{\beta }^{2}}-{{\sinh }^{2}}x=1$.
$\Rightarrow {{\beta }^{2}}-1={{\sinh }^{2}}x$.
$\Rightarrow \sinh x=\sqrt{{{\beta }^{2}}-1}$. Let us substitute this in equation (1).
\[\Rightarrow 2\alpha =\sqrt{{{\beta }^{2}}-1}\].
Let us square on both sides.
\[\Rightarrow {{\left( 2\alpha \right)}^{2}}={{\left( \sqrt{{{\beta }^{2}}-1} \right)}^{2}}\].
\[\Rightarrow 4{{\alpha }^{2}}={{\beta }^{2}}-1\].
$\Rightarrow {{\beta }^{2}}-4{{\alpha }^{2}}=1$.
Recently Updated Pages
Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Economics: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

When and how did Canada eventually gain its independence class 10 social science CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write examples of herbivores carnivores and omnivo class 10 biology CBSE

Which planet is known as the Watery Planet AJupiter class 10 social science CBSE
