
If the radius of the earth shrinks by 1%, its mass remaining the same, what is the change in acceleration due to gravity on the surface of the earth?
(A) Decrease by 2%
(B) Decrease by 0.5%
(C) Increase by 2%
(D) Increase by 0.5%
Answer
468.3k+ views
Hint: Percent error formula is the absolute value of the difference of the measured value and the actual value divided by the actual value and multiplied by 100 i.e.
$ %Error\text{ }in\text{ g; }\Delta \text{g}=\dfrac{g'-g}{g}\times 100 $
Where g’ is the new value and g is the actual value of acceleration due to gravity.
Complete step by step solution
Here the value of radius R shrinks by 1% so,
$ \Delta R=-1 $
$ \begin{align}
& \dfrac{R'-R}{R}\times 100=-1 \\
& R'-R=\dfrac{-R}{100} \\
& R'=R-\dfrac{R}{100} \\
& R'=0.99R \\
\end{align} $
Now the new value of g i.e. g’ becomes:
$ \begin{align}
& g'=\dfrac{GM}{R{{'}^{2}}} \\
& g'=\dfrac{GM}{{{\left( 0.99R \right)}^{2}}} \\
& g'=\dfrac{g}{{{\left( 0.99 \right)}^{2}}} \\
\end{align} $
Percentage change in g is
$ \begin{align}
& \Delta g=\dfrac{g'-g}{g}\times 100 \\
& =\dfrac{\dfrac{g}{{{\left( 0.99 \right)}^{2}}}-g}{g}\times 100 \\
& =\dfrac{g\left( \dfrac{1}{{{(0.99)}^{2}}}-1 \right)}{g}\times 100 \\
& =\dfrac{1-0.9801}{0.9801}\times 100 \\
& =\dfrac{0.0199}{0.9801}\times 100 \\
& =0.0203\times 100 \\
\end{align} $
Here the positive sign indicates that the value of g is decreasing.
Therefore the value of acceleration due to gravity is increased by 2%.
Note
Alternate method:
Percentage error in any term Z having formula $ Z=\dfrac{{{A}^{p}}{{B}^{q}}}{{{C}^{r}}} $ is given by:
$ \dfrac{\Delta Z}{Z}\times 100=\left( p\dfrac{\Delta A}{A}+q\dfrac{\Delta B}{B}-r\dfrac{\Delta C}{C} \right)\times 100 $
Here
$ \begin{align}
& g=\dfrac{GM}{{{R}^{2}}} \\
& g\text{ }\alpha \text{ }\dfrac{1}{{{R}^{2}}} \\
& \dfrac{\Delta g}{g}\times 100=-2\dfrac{\Delta R}{R}\times 100 \\
\end{align} $
As $ \begin{align}
& \dfrac{\Delta R}{R}\times 100=-1 \\
& \\
\end{align} $
So,
$ \begin{align}
& \dfrac{\Delta g}{g}\times 100=-2\times \left( -1 \right) \\
\end{align} $
Therefore the value of g increases by 2%.
$ %Error\text{ }in\text{ g; }\Delta \text{g}=\dfrac{g'-g}{g}\times 100 $
Where g’ is the new value and g is the actual value of acceleration due to gravity.
Complete step by step solution
Here the value of radius R shrinks by 1% so,
$ \Delta R=-1 $
$ \begin{align}
& \dfrac{R'-R}{R}\times 100=-1 \\
& R'-R=\dfrac{-R}{100} \\
& R'=R-\dfrac{R}{100} \\
& R'=0.99R \\
\end{align} $
Now the new value of g i.e. g’ becomes:
$ \begin{align}
& g'=\dfrac{GM}{R{{'}^{2}}} \\
& g'=\dfrac{GM}{{{\left( 0.99R \right)}^{2}}} \\
& g'=\dfrac{g}{{{\left( 0.99 \right)}^{2}}} \\
\end{align} $
Percentage change in g is
$ \begin{align}
& \Delta g=\dfrac{g'-g}{g}\times 100 \\
& =\dfrac{\dfrac{g}{{{\left( 0.99 \right)}^{2}}}-g}{g}\times 100 \\
& =\dfrac{g\left( \dfrac{1}{{{(0.99)}^{2}}}-1 \right)}{g}\times 100 \\
& =\dfrac{1-0.9801}{0.9801}\times 100 \\
& =\dfrac{0.0199}{0.9801}\times 100 \\
& =0.0203\times 100 \\
\end{align} $
Here the positive sign indicates that the value of g is decreasing.
Therefore the value of acceleration due to gravity is increased by 2%.
Note
Alternate method:
Percentage error in any term Z having formula $ Z=\dfrac{{{A}^{p}}{{B}^{q}}}{{{C}^{r}}} $ is given by:
$ \dfrac{\Delta Z}{Z}\times 100=\left( p\dfrac{\Delta A}{A}+q\dfrac{\Delta B}{B}-r\dfrac{\Delta C}{C} \right)\times 100 $
Here
$ \begin{align}
& g=\dfrac{GM}{{{R}^{2}}} \\
& g\text{ }\alpha \text{ }\dfrac{1}{{{R}^{2}}} \\
& \dfrac{\Delta g}{g}\times 100=-2\dfrac{\Delta R}{R}\times 100 \\
\end{align} $
As $ \begin{align}
& \dfrac{\Delta R}{R}\times 100=-1 \\
& \\
\end{align} $
So,
$ \begin{align}
& \dfrac{\Delta g}{g}\times 100=-2\times \left( -1 \right) \\
\end{align} $
Therefore the value of g increases by 2%.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

Raindrops are spherical because of A Gravitational class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Why is steel more elastic than rubber class 11 physics CBSE

Explain why a There is no atmosphere on the moon b class 11 physics CBSE
