
If the points of local extremum of \[f\left( x \right)={{x}^{3}}-3a{{x}^{2}}+3\left( {{a}^{2}}-1 \right)x+1\] lies between $-2\And 4$ , then a belongs to-
A.$\left( -2,2 \right)$
B.$\left( -\infty ,-1 \right)\cup \left( 3,\infty \right)$
C.$\left( -1,3 \right)$
D.$\left( 3,\infty \right)$
Answer
574.5k+ views
Hint: Simplify the given equation and find the first derivative. Then find the discriminate D=${{b}^{2}}-4ac$ from the equation of the first derivative. Find whether D$>0$ or equal to or less than zero. Then, put the values of its points of local extremum in the equation to find the range of a.
Complete step-by-step answer:
Given, \[f\left( x \right)={{x}^{3}}-3a{{x}^{2}}+3\left( {{a}^{2}}-1 \right)x+1\]
On simplifying we get,
\[\Rightarrow f\left( x \right)={{x}^{3}}-3a{{x}^{2}}+3{{a}^{2}}x-3x+1\]
On differentiating the given eq. we get,
\[\Rightarrow {{\text{f}}^{'}}\left( \text{x} \right)=\dfrac{d}{dx}\left[ {{x}^{3}}-3a{{x}^{2}}+3\left( {{a}^{2}}-1 \right)x+1 \right]\]
We know that differentiation of constant is zero and $\dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}}$
On applying this we get,
$\Rightarrow {{\text{f}}^{'}}\left( \text{x} \right)=3{{x}^{3-1}}-3\times 2a{{x}^{2-1}}+3\left( {{a}^{2}}-1 \right){{x}^{1-1}}+0$
On simplifying we get,
${{\text{f}}^{'}}\left( \text{x} \right)=3{{x}^{2}}-6ax+3\left( {{a}^{2}}-1 \right)$
On taking $3$ common from the eq. we get,
$\Rightarrow {{\text{f}}^{'}}\left( \text{x} \right)=3\left[ {{x}^{2}}-2ax+\left( {{a}^{2}}-1 \right) \right]$
On using the formula D=${{b}^{2}}-4ac$ we get,
\[\Rightarrow D=~{{\left( -2a \right)}^{2}}-4\left( {{a}^{2}}-1 \right)\]
On simplifying we get,
\[\Rightarrow D=~4{{a}^{2}}-4{{a}^{2}}+4\]
\[\Rightarrow D=~4>0\]
This means $a\in R$
Now here D=${{b}^{2}}-4ac$>$0$ which means the equation is a parabola.
It is given that the local points of extremum are $-2\And 4$ on putting these on the equation, the equation must be greater than zero.
So for ${{\text{f}}^{'}}\left( -2 \right)>0$ , we get
$\Rightarrow 4+4a+{{a}^{2}}-1>0$
$\Rightarrow {{a}^{2}}+4a+3>0$
On factorizing we get,
$\Rightarrow {{a}^{2}}+3a+a+3>0$
$\Rightarrow a\left( a+3 \right)+1\left( a+3 \right)>0$
$\Rightarrow \left( a+3 \right)\left( a+1 \right)>0$
This means that $a<-3\And a>-1$ --- (i)
And for ${{\text{f}}^{'}}\left( 4 \right)>0$ , we get,
$\Rightarrow 16-8a+{{a}^{2}}-1>0$
$\Rightarrow {{a}^{2}}-8a+15>0$
On factorizing we get,
$\left( a-5 \right)\left( a-3 \right)>0$
This means that $a<3\text{ Or }a>5$ --- (ii)
So since it lies in range $-2\And 4$ then
$\Rightarrow -2<\dfrac{-b}{2a}<4$
On putting values we get,
$\Rightarrow -2<\dfrac{-\left( -2a \right)}{2}<4$
On simplifying we get,
$\Rightarrow -2<\dfrac{2a}{2}<4$
$\Rightarrow -2From eq. (i) (ii) and (iii) it is clear that $a\in \left( -1,3 \right)$
Hence the correct answer is C.
Note: Here the student may get confused between the range. It is clear that the range of a lies between$-2\And 4$but is also given that $a>-1\And a<3$ so we conclude that the range belongs to $\left( -1,3 \right)$ .
Complete step-by-step answer:
Given, \[f\left( x \right)={{x}^{3}}-3a{{x}^{2}}+3\left( {{a}^{2}}-1 \right)x+1\]
On simplifying we get,
\[\Rightarrow f\left( x \right)={{x}^{3}}-3a{{x}^{2}}+3{{a}^{2}}x-3x+1\]
On differentiating the given eq. we get,
\[\Rightarrow {{\text{f}}^{'}}\left( \text{x} \right)=\dfrac{d}{dx}\left[ {{x}^{3}}-3a{{x}^{2}}+3\left( {{a}^{2}}-1 \right)x+1 \right]\]
We know that differentiation of constant is zero and $\dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}}$
On applying this we get,
$\Rightarrow {{\text{f}}^{'}}\left( \text{x} \right)=3{{x}^{3-1}}-3\times 2a{{x}^{2-1}}+3\left( {{a}^{2}}-1 \right){{x}^{1-1}}+0$
On simplifying we get,
${{\text{f}}^{'}}\left( \text{x} \right)=3{{x}^{2}}-6ax+3\left( {{a}^{2}}-1 \right)$
On taking $3$ common from the eq. we get,
$\Rightarrow {{\text{f}}^{'}}\left( \text{x} \right)=3\left[ {{x}^{2}}-2ax+\left( {{a}^{2}}-1 \right) \right]$
On using the formula D=${{b}^{2}}-4ac$ we get,
\[\Rightarrow D=~{{\left( -2a \right)}^{2}}-4\left( {{a}^{2}}-1 \right)\]
On simplifying we get,
\[\Rightarrow D=~4{{a}^{2}}-4{{a}^{2}}+4\]
\[\Rightarrow D=~4>0\]
This means $a\in R$
Now here D=${{b}^{2}}-4ac$>$0$ which means the equation is a parabola.
It is given that the local points of extremum are $-2\And 4$ on putting these on the equation, the equation must be greater than zero.
So for ${{\text{f}}^{'}}\left( -2 \right)>0$ , we get
$\Rightarrow 4+4a+{{a}^{2}}-1>0$
$\Rightarrow {{a}^{2}}+4a+3>0$
On factorizing we get,
$\Rightarrow {{a}^{2}}+3a+a+3>0$
$\Rightarrow a\left( a+3 \right)+1\left( a+3 \right)>0$
$\Rightarrow \left( a+3 \right)\left( a+1 \right)>0$
This means that $a<-3\And a>-1$ --- (i)
And for ${{\text{f}}^{'}}\left( 4 \right)>0$ , we get,
$\Rightarrow 16-8a+{{a}^{2}}-1>0$
$\Rightarrow {{a}^{2}}-8a+15>0$
On factorizing we get,
$\left( a-5 \right)\left( a-3 \right)>0$
This means that $a<3\text{ Or }a>5$ --- (ii)
So since it lies in range $-2\And 4$ then
$\Rightarrow -2<\dfrac{-b}{2a}<4$
On putting values we get,
$\Rightarrow -2<\dfrac{-\left( -2a \right)}{2}<4$
On simplifying we get,
$\Rightarrow -2<\dfrac{2a}{2}<4$
$\Rightarrow -2From eq. (i) (ii) and (iii) it is clear that $a\in \left( -1,3 \right)$
Hence the correct answer is C.
Note: Here the student may get confused between the range. It is clear that the range of a lies between$-2\And 4$but is also given that $a>-1\And a<3$ so we conclude that the range belongs to $\left( -1,3 \right)$ .
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

