
If the points \[(-1,-1,2),(2,m,5)\,and\,(3,11,6)\] are collinear, then find the value of m.
(A). 6
(B). 8
(C). 10
(D). 12
Answer
589.2k+ views
Hint: Assume three points P, Q, and R whose coordinates are \[(-1,-1,2),(2,m,5)\,and\,(3,11,6)\] respectively. Express the coordinates of the points P, Q, and R in the vector form as \[\overrightarrow{P}=-1\overset{\hat{\ }}{\mathop{i}}\,-1\overset{\hat{\ }}{\mathop{j}}\,+2\overset{\hat{\ }}{\mathop{k}}\,\] , \[\overrightarrow{Q}=2\overset{\hat{\ }}{\mathop{i}}\,+m\overset{\hat{\ }}{\mathop{j}}\,+5\overset{\hat{\ }}{\mathop{k}}\,\] , and \[\overrightarrow{R}=3\overset{\hat{\ }}{\mathop{i}}\,+11\overset{\hat{\ }}{\mathop{j}}\,+6\overset{\hat{\ }}{\mathop{k}}\,\] . If the points P, Q, and R is collinear then,\[\overrightarrow{PQ}=\lambda \overrightarrow{QR}\] where \[\overrightarrow{PQ}=\overrightarrow{P}-\overrightarrow{Q}\] and \[\overrightarrow{QR}=\overrightarrow{Q}-\overrightarrow{R}\] . Now compare LHS and RHS and solve it further.
Complete step-by-step solution -
Assume three points P, Q, and R whose coordinates are \[(-1,-1,2),(2,m,5)\,and\,(3,11,6)\] respectively.
If three points are collinear then all the three points lie on the same line.
Express the coordinates of the points P, Q, and R in the vector form.
Converting the coordinates of the points P, Q, and R in the vector form, we get
\[\overrightarrow{P}=-1\overset{\hat{\ }}{\mathop{i}}\,-1\overset{\hat{\ }}{\mathop{j}}\,+2\overset{\hat{\ }}{\mathop{k}}\,\] ……………….(1)
\[\overrightarrow{Q}=2\overset{\hat{\ }}{\mathop{i}}\,+m\overset{\hat{\ }}{\mathop{j}}\,+5\overset{\hat{\ }}{\mathop{k}}\,\] ……………….(2)
\[\overrightarrow{R}=3\overset{\hat{\ }}{\mathop{i}}\,+11\overset{\hat{\ }}{\mathop{j}}\,+6\overset{\hat{\ }}{\mathop{k}}\,\] ……………….(3)
If the points P, Q, and R is collinear then,
\[\overrightarrow{PQ}=\lambda \overrightarrow{QR}\] …………….(4)
Now, the value of the \[\overrightarrow{PQ}\] is,
\[\overrightarrow{PQ}=\overrightarrow{P}-\overrightarrow{Q}\] ……………..(5)
Putting the value of \[\overrightarrow{P}\] and \[\overrightarrow{Q}\] from equation (1) and equation (2) in equation (5), we get
\[\overrightarrow{PQ}=(-1\overset{\hat{\ }}{\mathop{i}}\,-1\overset{\hat{\ }}{\mathop{j}}\,+2\overset{\hat{\ }}{\mathop{k}}\,)-(2\overset{\hat{\ }}{\mathop{i}}\,+m\overset{\hat{\ }}{\mathop{j}}\,+5\overset{\hat{\ }}{\mathop{k}}\,)\]
\[\Rightarrow \overrightarrow{PQ}=-3\overset{\hat{\ }}{\mathop{i}}\,-(m+1)\overset{\hat{\ }}{\mathop{j}}\,-3\overset{\hat{\ }}{\mathop{k}}\,\] ……………………(6)
Now, the value of the \[\overrightarrow{QR}\] is,
\[\overrightarrow{QR}=\overrightarrow{Q}-\overrightarrow{R}\] ……………..(7)
Putting the value of \[\overrightarrow{Q}\] and \[\overrightarrow{R}\] from equation (2) and equation (3) in equation (7), we get
\[\overrightarrow{QR}=2\overset{\hat{\ }}{\mathop{i}}\,+m\overset{\hat{\ }}{\mathop{j}}\,+5\overset{\hat{\ }}{\mathop{k}}\,-3\overset{\hat{\ }}{\mathop{i}}\,-11\overset{\hat{\ }}{\mathop{j}}\,-6\overset{\hat{\ }}{\mathop{k}}\,\]
\[\Rightarrow \overrightarrow{QR}=-1\overset{\hat{\ }}{\mathop{i}}\,+(m-11)\overset{\hat{\ }}{\mathop{j}}\,-1\overset{\hat{\ }}{\mathop{k}}\,\] ………………………(8)
From equation (4), we have \[\overrightarrow{PQ}=\lambda \overrightarrow{QR}\] .
Now, putting the value of \[\overrightarrow{PQ}\] and \[\overrightarrow{QR}\] from equation (6) and equation (8) in equation (4), we get
\[\overrightarrow{PQ}=\lambda \overrightarrow{QR}\]
\[\Rightarrow -3\overset{\hat{\ }}{\mathop{i}}\,-(m+1)\overset{\hat{\ }}{\mathop{j}}\,-3\overset{\hat{\ }}{\mathop{k}}\,=\lambda \{-1\overset{\hat{\ }}{\mathop{i}}\,+(m-11)\overset{\hat{\ }}{\mathop{j}}\,-1\overset{\hat{\ }}{\mathop{k}}\,\}\]
On comparing LHS and RHS of the above equation, we get
\[-3=-\lambda \] ……………………..(9)
\[-(m+1)=\lambda (m-11)\] ………………….(10)
Solving equation (1), we get
\[-3=-\lambda \]
\[\Rightarrow 3=\lambda \] …………………(11)
Now, putting the value of \[\lambda \] in equation (10), we get
\[-(m+1)=\lambda (m-11)\]
\[\begin{align}
& -(m+1)=3(m-11) \\
& \Rightarrow -m-1=3m-33 \\
& \Rightarrow 33-1=3m+m \\
& \Rightarrow 32=4m \\
& \Rightarrow 8=m \\
\end{align}\]
So, the value of m is 8.
Hence, the correct option is (B).
Note: We can also solve this question using another method.
If the points \[\overrightarrow{P}=-1\overset{\hat{\ }}{\mathop{i}}\,-1\overset{\hat{\ }}{\mathop{j}}\,+2\overset{\hat{\ }}{\mathop{k}}\,\] , \[\overrightarrow{Q}=2\overset{\hat{\ }}{\mathop{i}}\,+m\overset{\hat{\ }}{\mathop{j}}\,+5\overset{\hat{\ }}{\mathop{k}}\,\] and \[\overrightarrow{R}=3\overset{\hat{\ }}{\mathop{i}}\,+11\overset{\hat{\ }}{\mathop{j}}\,+6\overset{\hat{\ }}{\mathop{k}}\,\] are collinear then \[\overrightarrow{PQ}=-3\overset{\hat{\ }}{\mathop{i}}\,-(m+1)\overset{\hat{\ }}{\mathop{j}}\,-3\overset{\hat{\ }}{\mathop{k}}\,\] must be parallel to \[\overrightarrow{QR}=-1\overset{\hat{\ }}{\mathop{i}}\,+(m-11)\overset{\hat{\ }}{\mathop{j}}\,-1\overset{\hat{\ }}{\mathop{k}}\,\] .
Hence, the ratios of corresponding direction ratios of parallel \[\overrightarrow{PQ}=-3\overset{\hat{\ }}{\mathop{i}}\,-(m+1)\overset{\hat{\ }}{\mathop{j}}\,-3\overset{\hat{\ }}{\mathop{k}}\,\] and \[\overrightarrow{QR}=-1\overset{\hat{\ }}{\mathop{i}}\,+(m-11)\overset{\hat{\ }}{\mathop{j}}\,-1\overset{\hat{\ }}{\mathop{k}}\,\] must be equal.
So, \[\dfrac{-3}{-1}=\dfrac{-(m+1)}{(m-11)}=\dfrac{-3}{-1}\] .
Now,
\[\begin{align}
& \dfrac{-3}{-1}=\dfrac{-(m+1)}{(m-11)} \\
& \Rightarrow -3\left( m-11 \right)=\left( m+1 \right) \\
& \Rightarrow -3m+33=m+1 \\
& \Rightarrow 33-1=3m+m \\
& \Rightarrow 32=4m \\
& \Rightarrow 8=m \\
\end{align}\]
So, the value of m is 8.
Hence, the correct option is (B).
Complete step-by-step solution -
Assume three points P, Q, and R whose coordinates are \[(-1,-1,2),(2,m,5)\,and\,(3,11,6)\] respectively.
If three points are collinear then all the three points lie on the same line.
Express the coordinates of the points P, Q, and R in the vector form.
Converting the coordinates of the points P, Q, and R in the vector form, we get
\[\overrightarrow{P}=-1\overset{\hat{\ }}{\mathop{i}}\,-1\overset{\hat{\ }}{\mathop{j}}\,+2\overset{\hat{\ }}{\mathop{k}}\,\] ……………….(1)
\[\overrightarrow{Q}=2\overset{\hat{\ }}{\mathop{i}}\,+m\overset{\hat{\ }}{\mathop{j}}\,+5\overset{\hat{\ }}{\mathop{k}}\,\] ……………….(2)
\[\overrightarrow{R}=3\overset{\hat{\ }}{\mathop{i}}\,+11\overset{\hat{\ }}{\mathop{j}}\,+6\overset{\hat{\ }}{\mathop{k}}\,\] ……………….(3)
If the points P, Q, and R is collinear then,
\[\overrightarrow{PQ}=\lambda \overrightarrow{QR}\] …………….(4)
Now, the value of the \[\overrightarrow{PQ}\] is,
\[\overrightarrow{PQ}=\overrightarrow{P}-\overrightarrow{Q}\] ……………..(5)
Putting the value of \[\overrightarrow{P}\] and \[\overrightarrow{Q}\] from equation (1) and equation (2) in equation (5), we get
\[\overrightarrow{PQ}=(-1\overset{\hat{\ }}{\mathop{i}}\,-1\overset{\hat{\ }}{\mathop{j}}\,+2\overset{\hat{\ }}{\mathop{k}}\,)-(2\overset{\hat{\ }}{\mathop{i}}\,+m\overset{\hat{\ }}{\mathop{j}}\,+5\overset{\hat{\ }}{\mathop{k}}\,)\]
\[\Rightarrow \overrightarrow{PQ}=-3\overset{\hat{\ }}{\mathop{i}}\,-(m+1)\overset{\hat{\ }}{\mathop{j}}\,-3\overset{\hat{\ }}{\mathop{k}}\,\] ……………………(6)
Now, the value of the \[\overrightarrow{QR}\] is,
\[\overrightarrow{QR}=\overrightarrow{Q}-\overrightarrow{R}\] ……………..(7)
Putting the value of \[\overrightarrow{Q}\] and \[\overrightarrow{R}\] from equation (2) and equation (3) in equation (7), we get
\[\overrightarrow{QR}=2\overset{\hat{\ }}{\mathop{i}}\,+m\overset{\hat{\ }}{\mathop{j}}\,+5\overset{\hat{\ }}{\mathop{k}}\,-3\overset{\hat{\ }}{\mathop{i}}\,-11\overset{\hat{\ }}{\mathop{j}}\,-6\overset{\hat{\ }}{\mathop{k}}\,\]
\[\Rightarrow \overrightarrow{QR}=-1\overset{\hat{\ }}{\mathop{i}}\,+(m-11)\overset{\hat{\ }}{\mathop{j}}\,-1\overset{\hat{\ }}{\mathop{k}}\,\] ………………………(8)
From equation (4), we have \[\overrightarrow{PQ}=\lambda \overrightarrow{QR}\] .
Now, putting the value of \[\overrightarrow{PQ}\] and \[\overrightarrow{QR}\] from equation (6) and equation (8) in equation (4), we get
\[\overrightarrow{PQ}=\lambda \overrightarrow{QR}\]
\[\Rightarrow -3\overset{\hat{\ }}{\mathop{i}}\,-(m+1)\overset{\hat{\ }}{\mathop{j}}\,-3\overset{\hat{\ }}{\mathop{k}}\,=\lambda \{-1\overset{\hat{\ }}{\mathop{i}}\,+(m-11)\overset{\hat{\ }}{\mathop{j}}\,-1\overset{\hat{\ }}{\mathop{k}}\,\}\]
On comparing LHS and RHS of the above equation, we get
\[-3=-\lambda \] ……………………..(9)
\[-(m+1)=\lambda (m-11)\] ………………….(10)
Solving equation (1), we get
\[-3=-\lambda \]
\[\Rightarrow 3=\lambda \] …………………(11)
Now, putting the value of \[\lambda \] in equation (10), we get
\[-(m+1)=\lambda (m-11)\]
\[\begin{align}
& -(m+1)=3(m-11) \\
& \Rightarrow -m-1=3m-33 \\
& \Rightarrow 33-1=3m+m \\
& \Rightarrow 32=4m \\
& \Rightarrow 8=m \\
\end{align}\]
So, the value of m is 8.
Hence, the correct option is (B).
Note: We can also solve this question using another method.
If the points \[\overrightarrow{P}=-1\overset{\hat{\ }}{\mathop{i}}\,-1\overset{\hat{\ }}{\mathop{j}}\,+2\overset{\hat{\ }}{\mathop{k}}\,\] , \[\overrightarrow{Q}=2\overset{\hat{\ }}{\mathop{i}}\,+m\overset{\hat{\ }}{\mathop{j}}\,+5\overset{\hat{\ }}{\mathop{k}}\,\] and \[\overrightarrow{R}=3\overset{\hat{\ }}{\mathop{i}}\,+11\overset{\hat{\ }}{\mathop{j}}\,+6\overset{\hat{\ }}{\mathop{k}}\,\] are collinear then \[\overrightarrow{PQ}=-3\overset{\hat{\ }}{\mathop{i}}\,-(m+1)\overset{\hat{\ }}{\mathop{j}}\,-3\overset{\hat{\ }}{\mathop{k}}\,\] must be parallel to \[\overrightarrow{QR}=-1\overset{\hat{\ }}{\mathop{i}}\,+(m-11)\overset{\hat{\ }}{\mathop{j}}\,-1\overset{\hat{\ }}{\mathop{k}}\,\] .
Hence, the ratios of corresponding direction ratios of parallel \[\overrightarrow{PQ}=-3\overset{\hat{\ }}{\mathop{i}}\,-(m+1)\overset{\hat{\ }}{\mathop{j}}\,-3\overset{\hat{\ }}{\mathop{k}}\,\] and \[\overrightarrow{QR}=-1\overset{\hat{\ }}{\mathop{i}}\,+(m-11)\overset{\hat{\ }}{\mathop{j}}\,-1\overset{\hat{\ }}{\mathop{k}}\,\] must be equal.
So, \[\dfrac{-3}{-1}=\dfrac{-(m+1)}{(m-11)}=\dfrac{-3}{-1}\] .
Now,
\[\begin{align}
& \dfrac{-3}{-1}=\dfrac{-(m+1)}{(m-11)} \\
& \Rightarrow -3\left( m-11 \right)=\left( m+1 \right) \\
& \Rightarrow -3m+33=m+1 \\
& \Rightarrow 33-1=3m+m \\
& \Rightarrow 32=4m \\
& \Rightarrow 8=m \\
\end{align}\]
So, the value of m is 8.
Hence, the correct option is (B).
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

