
If the origin and point $P(2,3,4), Q(1,2,3)$ and $R(x,y,z)$ are coplanar then
(A) $x - 2y - z = 0$
(B) $x + 2y + z = 0$
(C) $x - 2y + z = 0$
(D) $2x - 2y + z = 0$
Answer
590.4k+ views
Hint: Let\[({x_1},{y_1},{z_1}) \equiv (2,3,4),({x_2},{y_2},{z_2}) \equiv (1,2,3),({x_3},{y_3},{z_3}) \equiv (x,y,z),({x_4},{y_4},{z_4}) \equiv (0,0,0)\]. Then solve the equation\[\left| {\begin{array}{*{20}{c}}
{{x_4} - {x_1}}&{{y_4} - {y_1}}&{{z_4} - {z_1}} \\
{{x_4} - {x_2}}&{{y_4} - {y_2}}&{{z_4} - {z_2}} \\
{{x_4} - {x_3}}&{{y_4} - {y_3}}&{{z_4} - {z_3}}
\end{array}} \right| = 0\]. The equation of the plane thus obtained is the required answer.
Complete step by step answer:
We are given the points $P(2,3,4)$, $Q(1,2,3)$ and $R(x,y,z)$and also the origin. These points are coplanar.
Let $O(0,0,0)$ be the origin of the plane containing these points.
Thus, O, P, Q, and R are co-planar points.
We know that if \[A({x_1},{y_1},{z_1}), B({x_2},{y_2},{z_2}), C({x_3},{y_3},{z_3}), D({x_4},{y_4},{z_4})\] are four points such that they are coplanar, then they satisfy the following condition:
\[\left| {\begin{array}{*{20}{c}}
{{x_4} - {x_1}}&{{y_4} - {y_1}}&{{z_4} - {z_1}} \\
{{x_4} - {x_2}}&{{y_4} - {y_2}}&{{z_4} - {z_2}} \\
{{x_4} - {x_3}}&{{y_4} - {y_3}}&{{z_4} - {z_3}}
\end{array}} \right| = 0\]
Now, consider the points $O(0,0,0)$, $P(2,3,4)$, $Q(1,2,3)$ and $R(x,y,z)$.
Let
\[({x_1},{y_1},{z_1}) \equiv (2,3,4)\]
\[({x_2},{y_2},{z_2}) \equiv (1,2,3)\]
\[({x_3},{y_3},{z_3}) \equiv (x,y,z)\]
\[({x_4},{y_4},{z_4}) \equiv (0,0,0)\]
Then the equation \[\left| {\begin{array}{*{20}{c}}
{{x_4} - {x_1}}&{{y_4} - {y_1}}&{{z_4} - {z_1}} \\
{{x_4} - {x_2}}&{{y_4} - {y_2}}&{{z_4} - {z_2}} \\
{{x_4} - {x_3}}&{{y_4} - {y_3}}&{{z_4} - {z_3}}
\end{array}} \right| = 0\]becomes
\[
\left| {\begin{array}{*{20}{c}}
{0 - 2}&{0 - 3}&{0 - 4} \\
{0 - 1}&{0 - 2}&{0 - 3} \\
{0 - x}&{0 - y}&{0 - z}
\end{array}} \right| = 0 \\
\Rightarrow \left| {\begin{array}{*{20}{c}}
{ - 2}&{ - 3}&{ - 4} \\
{ - 1}&{ - 2}&{ - 3} \\
{ - x}&{ - y}&{ - z}
\end{array}} \right| = 0 \\
\]
We can remove the negative signs inside the determinant in the LHS of the above equation by multiplying each row by $ - 1$.
Thus, we have
\[\left| {\begin{array}{*{20}{c}}
2&3&4 \\
1&2&3 \\
x&y&z
\end{array}} \right| = 0....(1)\]
Solving the determinant in (1), we get
\[
\left| {\begin{array}{*{20}{c}}
2&3&4 \\
1&2&3 \\
x&y&z
\end{array}} \right| = 2(2z - 3y) - 3(z - 3x) + 4(y - 2x) \\
= 4z - 6y - 3z + 9x + 4y - 8x \\
= x - 2y + z........(2) \\
\]
Using (1) and (2), we get the equation of the plane as \[x - 2y + z = 0\]
Hence \[x - 2y + z = 0\] is the correct answer.
Note: One of the properties of the determinant is as follows:
If we multiply any row or column of a determinant by a constant k, then the determinant gets multiplied by k.
{{x_4} - {x_1}}&{{y_4} - {y_1}}&{{z_4} - {z_1}} \\
{{x_4} - {x_2}}&{{y_4} - {y_2}}&{{z_4} - {z_2}} \\
{{x_4} - {x_3}}&{{y_4} - {y_3}}&{{z_4} - {z_3}}
\end{array}} \right| = 0\]. The equation of the plane thus obtained is the required answer.
Complete step by step answer:
We are given the points $P(2,3,4)$, $Q(1,2,3)$ and $R(x,y,z)$and also the origin. These points are coplanar.
Let $O(0,0,0)$ be the origin of the plane containing these points.
Thus, O, P, Q, and R are co-planar points.
We know that if \[A({x_1},{y_1},{z_1}), B({x_2},{y_2},{z_2}), C({x_3},{y_3},{z_3}), D({x_4},{y_4},{z_4})\] are four points such that they are coplanar, then they satisfy the following condition:
\[\left| {\begin{array}{*{20}{c}}
{{x_4} - {x_1}}&{{y_4} - {y_1}}&{{z_4} - {z_1}} \\
{{x_4} - {x_2}}&{{y_4} - {y_2}}&{{z_4} - {z_2}} \\
{{x_4} - {x_3}}&{{y_4} - {y_3}}&{{z_4} - {z_3}}
\end{array}} \right| = 0\]
Now, consider the points $O(0,0,0)$, $P(2,3,4)$, $Q(1,2,3)$ and $R(x,y,z)$.
Let
\[({x_1},{y_1},{z_1}) \equiv (2,3,4)\]
\[({x_2},{y_2},{z_2}) \equiv (1,2,3)\]
\[({x_3},{y_3},{z_3}) \equiv (x,y,z)\]
\[({x_4},{y_4},{z_4}) \equiv (0,0,0)\]
Then the equation \[\left| {\begin{array}{*{20}{c}}
{{x_4} - {x_1}}&{{y_4} - {y_1}}&{{z_4} - {z_1}} \\
{{x_4} - {x_2}}&{{y_4} - {y_2}}&{{z_4} - {z_2}} \\
{{x_4} - {x_3}}&{{y_4} - {y_3}}&{{z_4} - {z_3}}
\end{array}} \right| = 0\]becomes
\[
\left| {\begin{array}{*{20}{c}}
{0 - 2}&{0 - 3}&{0 - 4} \\
{0 - 1}&{0 - 2}&{0 - 3} \\
{0 - x}&{0 - y}&{0 - z}
\end{array}} \right| = 0 \\
\Rightarrow \left| {\begin{array}{*{20}{c}}
{ - 2}&{ - 3}&{ - 4} \\
{ - 1}&{ - 2}&{ - 3} \\
{ - x}&{ - y}&{ - z}
\end{array}} \right| = 0 \\
\]
We can remove the negative signs inside the determinant in the LHS of the above equation by multiplying each row by $ - 1$.
Thus, we have
\[\left| {\begin{array}{*{20}{c}}
2&3&4 \\
1&2&3 \\
x&y&z
\end{array}} \right| = 0....(1)\]
Solving the determinant in (1), we get
\[
\left| {\begin{array}{*{20}{c}}
2&3&4 \\
1&2&3 \\
x&y&z
\end{array}} \right| = 2(2z - 3y) - 3(z - 3x) + 4(y - 2x) \\
= 4z - 6y - 3z + 9x + 4y - 8x \\
= x - 2y + z........(2) \\
\]
Using (1) and (2), we get the equation of the plane as \[x - 2y + z = 0\]
Hence \[x - 2y + z = 0\] is the correct answer.
Note: One of the properties of the determinant is as follows:
If we multiply any row or column of a determinant by a constant k, then the determinant gets multiplied by k.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

