
If the origin and point $P(2,3,4), Q(1,2,3)$ and $R(x,y,z)$ are coplanar then
(A) $x - 2y - z = 0$
(B) $x + 2y + z = 0$
(C) $x - 2y + z = 0$
(D) $2x - 2y + z = 0$
Answer
574.8k+ views
Hint: Let\[({x_1},{y_1},{z_1}) \equiv (2,3,4),({x_2},{y_2},{z_2}) \equiv (1,2,3),({x_3},{y_3},{z_3}) \equiv (x,y,z),({x_4},{y_4},{z_4}) \equiv (0,0,0)\]. Then solve the equation\[\left| {\begin{array}{*{20}{c}}
{{x_4} - {x_1}}&{{y_4} - {y_1}}&{{z_4} - {z_1}} \\
{{x_4} - {x_2}}&{{y_4} - {y_2}}&{{z_4} - {z_2}} \\
{{x_4} - {x_3}}&{{y_4} - {y_3}}&{{z_4} - {z_3}}
\end{array}} \right| = 0\]. The equation of the plane thus obtained is the required answer.
Complete step by step answer:
We are given the points $P(2,3,4)$, $Q(1,2,3)$ and $R(x,y,z)$and also the origin. These points are coplanar.
Let $O(0,0,0)$ be the origin of the plane containing these points.
Thus, O, P, Q, and R are co-planar points.
We know that if \[A({x_1},{y_1},{z_1}), B({x_2},{y_2},{z_2}), C({x_3},{y_3},{z_3}), D({x_4},{y_4},{z_4})\] are four points such that they are coplanar, then they satisfy the following condition:
\[\left| {\begin{array}{*{20}{c}}
{{x_4} - {x_1}}&{{y_4} - {y_1}}&{{z_4} - {z_1}} \\
{{x_4} - {x_2}}&{{y_4} - {y_2}}&{{z_4} - {z_2}} \\
{{x_4} - {x_3}}&{{y_4} - {y_3}}&{{z_4} - {z_3}}
\end{array}} \right| = 0\]
Now, consider the points $O(0,0,0)$, $P(2,3,4)$, $Q(1,2,3)$ and $R(x,y,z)$.
Let
\[({x_1},{y_1},{z_1}) \equiv (2,3,4)\]
\[({x_2},{y_2},{z_2}) \equiv (1,2,3)\]
\[({x_3},{y_3},{z_3}) \equiv (x,y,z)\]
\[({x_4},{y_4},{z_4}) \equiv (0,0,0)\]
Then the equation \[\left| {\begin{array}{*{20}{c}}
{{x_4} - {x_1}}&{{y_4} - {y_1}}&{{z_4} - {z_1}} \\
{{x_4} - {x_2}}&{{y_4} - {y_2}}&{{z_4} - {z_2}} \\
{{x_4} - {x_3}}&{{y_4} - {y_3}}&{{z_4} - {z_3}}
\end{array}} \right| = 0\]becomes
\[
\left| {\begin{array}{*{20}{c}}
{0 - 2}&{0 - 3}&{0 - 4} \\
{0 - 1}&{0 - 2}&{0 - 3} \\
{0 - x}&{0 - y}&{0 - z}
\end{array}} \right| = 0 \\
\Rightarrow \left| {\begin{array}{*{20}{c}}
{ - 2}&{ - 3}&{ - 4} \\
{ - 1}&{ - 2}&{ - 3} \\
{ - x}&{ - y}&{ - z}
\end{array}} \right| = 0 \\
\]
We can remove the negative signs inside the determinant in the LHS of the above equation by multiplying each row by $ - 1$.
Thus, we have
\[\left| {\begin{array}{*{20}{c}}
2&3&4 \\
1&2&3 \\
x&y&z
\end{array}} \right| = 0....(1)\]
Solving the determinant in (1), we get
\[
\left| {\begin{array}{*{20}{c}}
2&3&4 \\
1&2&3 \\
x&y&z
\end{array}} \right| = 2(2z - 3y) - 3(z - 3x) + 4(y - 2x) \\
= 4z - 6y - 3z + 9x + 4y - 8x \\
= x - 2y + z........(2) \\
\]
Using (1) and (2), we get the equation of the plane as \[x - 2y + z = 0\]
Hence \[x - 2y + z = 0\] is the correct answer.
Note: One of the properties of the determinant is as follows:
If we multiply any row or column of a determinant by a constant k, then the determinant gets multiplied by k.
{{x_4} - {x_1}}&{{y_4} - {y_1}}&{{z_4} - {z_1}} \\
{{x_4} - {x_2}}&{{y_4} - {y_2}}&{{z_4} - {z_2}} \\
{{x_4} - {x_3}}&{{y_4} - {y_3}}&{{z_4} - {z_3}}
\end{array}} \right| = 0\]. The equation of the plane thus obtained is the required answer.
Complete step by step answer:
We are given the points $P(2,3,4)$, $Q(1,2,3)$ and $R(x,y,z)$and also the origin. These points are coplanar.
Let $O(0,0,0)$ be the origin of the plane containing these points.
Thus, O, P, Q, and R are co-planar points.
We know that if \[A({x_1},{y_1},{z_1}), B({x_2},{y_2},{z_2}), C({x_3},{y_3},{z_3}), D({x_4},{y_4},{z_4})\] are four points such that they are coplanar, then they satisfy the following condition:
\[\left| {\begin{array}{*{20}{c}}
{{x_4} - {x_1}}&{{y_4} - {y_1}}&{{z_4} - {z_1}} \\
{{x_4} - {x_2}}&{{y_4} - {y_2}}&{{z_4} - {z_2}} \\
{{x_4} - {x_3}}&{{y_4} - {y_3}}&{{z_4} - {z_3}}
\end{array}} \right| = 0\]
Now, consider the points $O(0,0,0)$, $P(2,3,4)$, $Q(1,2,3)$ and $R(x,y,z)$.
Let
\[({x_1},{y_1},{z_1}) \equiv (2,3,4)\]
\[({x_2},{y_2},{z_2}) \equiv (1,2,3)\]
\[({x_3},{y_3},{z_3}) \equiv (x,y,z)\]
\[({x_4},{y_4},{z_4}) \equiv (0,0,0)\]
Then the equation \[\left| {\begin{array}{*{20}{c}}
{{x_4} - {x_1}}&{{y_4} - {y_1}}&{{z_4} - {z_1}} \\
{{x_4} - {x_2}}&{{y_4} - {y_2}}&{{z_4} - {z_2}} \\
{{x_4} - {x_3}}&{{y_4} - {y_3}}&{{z_4} - {z_3}}
\end{array}} \right| = 0\]becomes
\[
\left| {\begin{array}{*{20}{c}}
{0 - 2}&{0 - 3}&{0 - 4} \\
{0 - 1}&{0 - 2}&{0 - 3} \\
{0 - x}&{0 - y}&{0 - z}
\end{array}} \right| = 0 \\
\Rightarrow \left| {\begin{array}{*{20}{c}}
{ - 2}&{ - 3}&{ - 4} \\
{ - 1}&{ - 2}&{ - 3} \\
{ - x}&{ - y}&{ - z}
\end{array}} \right| = 0 \\
\]
We can remove the negative signs inside the determinant in the LHS of the above equation by multiplying each row by $ - 1$.
Thus, we have
\[\left| {\begin{array}{*{20}{c}}
2&3&4 \\
1&2&3 \\
x&y&z
\end{array}} \right| = 0....(1)\]
Solving the determinant in (1), we get
\[
\left| {\begin{array}{*{20}{c}}
2&3&4 \\
1&2&3 \\
x&y&z
\end{array}} \right| = 2(2z - 3y) - 3(z - 3x) + 4(y - 2x) \\
= 4z - 6y - 3z + 9x + 4y - 8x \\
= x - 2y + z........(2) \\
\]
Using (1) and (2), we get the equation of the plane as \[x - 2y + z = 0\]
Hence \[x - 2y + z = 0\] is the correct answer.
Note: One of the properties of the determinant is as follows:
If we multiply any row or column of a determinant by a constant k, then the determinant gets multiplied by k.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

