
If the ${{n}^{th}}$ term of an A.P. is $(2n+1)$, find the sum of the first $n$ terms of the A.P.
Answer
519.9k+ views
Hint: The given question is related to arithmetic progression. Try to recall the formulae related to ${{n}^{th}}$ term of an arithmetic progression and the sum of first $n$ terms of an arithmetic progression.
Before proceeding with the solution, we must know the concept of arithmetic progression. Arithmetic progression is a series of numbers in which the difference between any two consecutive numbers is always constant.
Let’s consider an arithmetic progression ${{a}_{1}},{{a}_{2}},{{a}_{3}},{{a}_{4}},{{a}_{5}}.....$ .
We know, the difference between consecutive terms is constant. Let the difference between consecutive numbers be $d$.
So, $d={{a}_{2}}-{{a}_{1}}={{a}_{3}}-{{a}_{2}}={{a}_{4}}-{{a}_{3}}...$
So , we can write ${{a}_{2}}={{a}_{1}}+d$ and ${{a}_{3}}={{a}_{2}}+d={{a}_{1}}+2d$ .
Similarly, ${{a}_{4}}={{a}_{3}}+d={{a}_{1}}+3d$ .
Following the pattern, we can say that the ${{n}^{th}}$ term of the arithmetic progression is given as ${{a}_{n}}={{a}_{1}}+(n-1)d$ .
Now, let the sum of the first $n$ terms of an arithmetic progression be denoted as ${{S}_{n}}$.
So, ${{S}_{n}}={{a}_{1}}+{{a}_{2}}+{{a}_{3}}+....+{{a}_{n}}$.
Substituting the values of ${{a}_{1}},{{a}_{2}},{{a}_{3}}....{{a}_{n}}$ in the expression of ${{S}_{n}}$ , we get
${{S}_{n}}={{a}_{1}}+\left( {{a}_{1}}+d \right)+\left( {{a}_{1}}+2d \right)+\left( {{a}_{1}}+3d \right)+.....+\left( {{a}_{1}}+(n-1)d \right)$
$\Rightarrow {{S}_{n}}=n{{a}_{1}}+d(1+2+3+...+(n-1))$ .
Now, we know, the sum of first $n$ natural numbers is given as $\dfrac{n(n+1)}{2}$ .
So, the sum of first $(n-1)$ natural numbers is $\dfrac{(n-1)n}{2}$
So, ${{S}_{n}}=n{{a}_{1}}+\dfrac{n(n-1)}{2}d$
$\Rightarrow {{S}_{n}}=\dfrac{n}{2}\left[ 2{{a}_{1}}+(n-1)d \right]$ .
Now, we are given an arithmetic progression whose ${{n}^{th}}$ term is given as $(2n+1)$.
To find the first term of the progression, we will substitute $n=1$ in the expression of the ${{n}^{th}}$ term.
So, the first term is given as ${{a}_{1}}=(2\times 1)+1=3$.
Now, to find the common difference, we must know the value of ${{2}^{nd}}$ term of the progression. To find the value of the second term, we will substitute $n=2$ in the expression of the ${{n}^{th}}$ term.
So, the second term is given as ${{a}_{2}}=\left( 2\times 2 \right)+1=5$.
Now, the common difference $d={{a}_{2}}-{{a}_{1}}=5-3=2$.
So, we have an arithmetic progression with the first term ${{a}_{1}}=3$ and common difference $d=2$ .
So, the sum of the first $n$ terms of the given arithmetic progression is given as ${{S}_{n}}=\dfrac{n}{2}\left[ (2\times 3)+(n-1)2 \right]$
$=\dfrac{n}{2}\left( 6+2n-2 \right)$
$=\dfrac{n}{2}(4+2n)$
$=n(n+2)$
Hence, the sum of the first $n$ terms of an arithmetic progression, whose ${{n}^{th}}$ term is given by $(2n+1)$, is given as ${{S}_{n}}=n(n+2)$.
Note: The common difference of an arithmetic progression is given as $d={{a}_{2}}-{{a}_{1}}$ and not $d={{a}_{1}}-{{a}_{2}}$. Students generally get confused and make this mistake.
Before proceeding with the solution, we must know the concept of arithmetic progression. Arithmetic progression is a series of numbers in which the difference between any two consecutive numbers is always constant.
Let’s consider an arithmetic progression ${{a}_{1}},{{a}_{2}},{{a}_{3}},{{a}_{4}},{{a}_{5}}.....$ .
We know, the difference between consecutive terms is constant. Let the difference between consecutive numbers be $d$.
So, $d={{a}_{2}}-{{a}_{1}}={{a}_{3}}-{{a}_{2}}={{a}_{4}}-{{a}_{3}}...$
So , we can write ${{a}_{2}}={{a}_{1}}+d$ and ${{a}_{3}}={{a}_{2}}+d={{a}_{1}}+2d$ .
Similarly, ${{a}_{4}}={{a}_{3}}+d={{a}_{1}}+3d$ .
Following the pattern, we can say that the ${{n}^{th}}$ term of the arithmetic progression is given as ${{a}_{n}}={{a}_{1}}+(n-1)d$ .
Now, let the sum of the first $n$ terms of an arithmetic progression be denoted as ${{S}_{n}}$.
So, ${{S}_{n}}={{a}_{1}}+{{a}_{2}}+{{a}_{3}}+....+{{a}_{n}}$.
Substituting the values of ${{a}_{1}},{{a}_{2}},{{a}_{3}}....{{a}_{n}}$ in the expression of ${{S}_{n}}$ , we get
${{S}_{n}}={{a}_{1}}+\left( {{a}_{1}}+d \right)+\left( {{a}_{1}}+2d \right)+\left( {{a}_{1}}+3d \right)+.....+\left( {{a}_{1}}+(n-1)d \right)$
$\Rightarrow {{S}_{n}}=n{{a}_{1}}+d(1+2+3+...+(n-1))$ .
Now, we know, the sum of first $n$ natural numbers is given as $\dfrac{n(n+1)}{2}$ .
So, the sum of first $(n-1)$ natural numbers is $\dfrac{(n-1)n}{2}$
So, ${{S}_{n}}=n{{a}_{1}}+\dfrac{n(n-1)}{2}d$
$\Rightarrow {{S}_{n}}=\dfrac{n}{2}\left[ 2{{a}_{1}}+(n-1)d \right]$ .
Now, we are given an arithmetic progression whose ${{n}^{th}}$ term is given as $(2n+1)$.
To find the first term of the progression, we will substitute $n=1$ in the expression of the ${{n}^{th}}$ term.
So, the first term is given as ${{a}_{1}}=(2\times 1)+1=3$.
Now, to find the common difference, we must know the value of ${{2}^{nd}}$ term of the progression. To find the value of the second term, we will substitute $n=2$ in the expression of the ${{n}^{th}}$ term.
So, the second term is given as ${{a}_{2}}=\left( 2\times 2 \right)+1=5$.
Now, the common difference $d={{a}_{2}}-{{a}_{1}}=5-3=2$.
So, we have an arithmetic progression with the first term ${{a}_{1}}=3$ and common difference $d=2$ .
So, the sum of the first $n$ terms of the given arithmetic progression is given as ${{S}_{n}}=\dfrac{n}{2}\left[ (2\times 3)+(n-1)2 \right]$
$=\dfrac{n}{2}\left( 6+2n-2 \right)$
$=\dfrac{n}{2}(4+2n)$
$=n(n+2)$
Hence, the sum of the first $n$ terms of an arithmetic progression, whose ${{n}^{th}}$ term is given by $(2n+1)$, is given as ${{S}_{n}}=n(n+2)$.
Note: The common difference of an arithmetic progression is given as $d={{a}_{2}}-{{a}_{1}}$ and not $d={{a}_{1}}-{{a}_{2}}$. Students generally get confused and make this mistake.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

