
If the mean and standard deviation of 5 observations \[{{x}_{1}},{{x}_{2}},{{x}_{3}},{{x}_{4}},{{x}_{5}}\] are 10 and 3, respectively, then the variance of 6 observations \[{{x}_{1}},{{x}_{2}},.....,{{x}_{5}}\] and -50 is equal to: -
(a) 582.5
(b) 507.5
(c) 586.5
(d) 509.5
Answer
579k+ views
Hint: To calculate the variance of 6 observations \[{{x}_{1}},{{x}_{2}},.....,{{x}_{5}}\], use the formula: - \[{{\sigma }^{2}}=\dfrac{1}{n}\sum\limits_{i=1}^{n}{{{\left( {{x}_{i}}-\overline{x} \right)}^{2}}}\], where ‘n’ is the number of terms, ‘\[{{\sigma }^{2}}\]’ is the variance and ‘\[\overline{x}\]’ is the mean of ‘n’ observations. Substitute the value of \[\dfrac{\sum\limits_{i=1}^{5}{{{x}_{i}}}}{5}\] and \[\sqrt{\dfrac{\sum\limits_{i=1}^{5}{{{\left( x-\overline{x} \right)}^{2}}}}{5}}\] using the given information about 5 observations, to get the answer. Here, \[\dfrac{\sum\limits_{i=1}^{5}{{{x}_{i}}}}{5}\] is the mean and \[\dfrac{\sum\limits_{i=1}^{5}{{{\left( x-\overline{x} \right)}^{2}}}}{5}\] is the standard deviation of \[{{x}_{1}},{{x}_{2}},.....,{{x}_{5}}\].
Complete step by step answer:
Here, we have been provided that mean of 5 observations \[{{x}_{1}},{{x}_{2}},.....,{{x}_{5}}\] is 10. Therefore, applying the formula for mean given by \[\overline{x}=\dfrac{\sum\limits_{i=1}^{n}{{{x}_{i}}}}{n}\], where ‘n’ is the number of terms and ‘\[\overline{x}\]’ is the mean, we get,
\[\Rightarrow \overline{x}=\dfrac{1}{5}\times \sum\limits_{i=1}^{5}{{{x}_{i}}=10}\] - (1)
Now, we have also been provided that standard deviation of \[{{x}_{1}},{{x}_{2}},.....,{{x}_{5}}\] is 3. Therefore, applying the formula for standard deviation, given by \[\sqrt{\dfrac{1}{n}\times \sum\limits_{i=1}^{n}{{{\left( {{x}_{1}}-\overline{x} \right)}^{2}}}}\], we get,
Standard deviation = \[\sqrt{\dfrac{1}{5}\times \sum\limits_{i=1}^{5}{{{\left( {{x}_{i}}-\overline{x} \right)}^{2}}}}\]
Substituting the value of \[\overline{x}\] from equation (1), we get,
Standard deviation = \[\sqrt{\dfrac{1}{5}\sum\limits_{i=1}^{5}{{{\left( {{x}_{i}}-10 \right)}^{2}}}}=3\]
\[\Rightarrow \sqrt{\dfrac{1}{5}\sum\limits_{i=1}^{5}{{{\left( {{x}_{i}}-10 \right)}^{2}}}}=3\]
On squaring both sides, we get,
\[\Rightarrow \dfrac{1}{5}\sum\limits_{i=1}^{5}{{{\left( {{x}_{i}}-10 \right)}^{2}}}=9\]
\[\Rightarrow \sum\limits_{i=1}^{5}{{{\left( {{x}_{i}}-10 \right)}^{2}}}=45\] - (2)
Now, we have been asked to find the variance of 6 observations \[{{x}_{1}},{{x}_{2}},.....,{{x}_{5}}\] and -50.
We know that variance of ‘n’ observation is given by the formula: -
\[{{\sigma }^{2}}=\dfrac{1}{n}\sum\limits_{i=1}^{n}{{{\left( {{x}_{i}}-\overline{x} \right)}^{2}}}\], where ‘\[\overline{x}\]’ is the mean of ‘n’ observations and ‘\[{{\sigma }^{2}}\]’ is the notation of variance.
So, we have 6 observations \[{{x}_{1}},{{x}_{2}},.....,{{x}_{5}}\] and -50. Let us calculate its mean first.
\[\Rightarrow \] Mean = \[\dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}+{{x}_{4}}+{{x}_{5}}+\left( -50 \right)}{6}\]
This can be written as,
\[\Rightarrow \] Mean = \[\dfrac{\left( \sum\limits_{i=1}^{5}{{{x}_{i}}} \right)-50}{6}\]
Now, substituting the value of \[\sum\limits_{i=1}^{5}{{{x}_{i}}}\] from equation (1), we get,
\[\Rightarrow \] Mean = \[\dfrac{5\times 10-50}{6}=\dfrac{50-50}{6}=0\]
Therefore, the mean of the given 6 observations is 0. So, the expression of variance for these 6 observation becomes,
\[\begin{align}
& \Rightarrow {{\sigma }^{2}}=\dfrac{1}{6}\sum\limits_{i=1}^{6}{x_{i}^{2}} \\
& \Rightarrow {{\sigma }^{2}}=\dfrac{1}{6}\left[ x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+x_{5}^{2}+{{\left( -50 \right)}^{2}} \right] \\
& \Rightarrow {{\sigma }^{2}}=\dfrac{1}{6}\left[ \left( \sum\limits_{i=1}^{5}{x_{i}^{2}} \right)+{{\left( -50 \right)}^{2}} \right] \\
\end{align}\]
\[\Rightarrow {{\sigma }^{2}}=\dfrac{1}{6}\left[ \sum\limits_{i=1}^{5}{x_{i}^{2}}+2500 \right]\] - (3)
Now, let us come back to equation (2), we have,
\[\Rightarrow \sum\limits_{i=1}^{5}{{{\left( {{x}_{i}}-10 \right)}^{2}}}=45\]
Applying the identity, \[{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\], we get,
\[\Rightarrow \sum\limits_{i=1}^{5}{\left( x_{i}^{2}+{{10}^{2}}-20{{x}_{i}} \right)}=45\]
\[\begin{align}
& \Rightarrow \sum\limits_{i=1}^{5}{x_{i}^{2}}+\sum\limits_{i=1}^{5}{{{10}^{2}}}-20\sum\limits_{i=1}^{5}{{{x}_{i}}}=45 \\
& \Rightarrow \sum\limits_{i=1}^{5}{x_{i}^{2}}+\sum\limits_{i=1}^{5}{100}-20\sum\limits_{i=1}^{5}{{{x}_{i}}}=45 \\
\end{align}\]
Using the value of \[\sum\limits_{i=1}^{5}{{{x}_{i}}}\] from equation (1), we get,
\[\begin{align}
& \Rightarrow \sum\limits_{i=1}^{5}{x_{i}^{2}}+100\times 5-20\times 50=45 \\
& \Rightarrow \sum\limits_{i=1}^{5}{x_{i}^{2}}+500-1000=45 \\
\end{align}\]
\[\Rightarrow \sum\limits_{i=1}^{5}{x_{i}^{2}}=545\] - (4)
Therefore, substituting the value of \[\sum\limits_{i=1}^{5}{x_{i}^{2}}\] from equation (4) in equation (3), we get,
\[\begin{align}
& \Rightarrow {{\sigma }^{2}}=\dfrac{1}{6}\left[ 545+2500 \right] \\
& \Rightarrow {{\sigma }^{2}}=\dfrac{1}{6}\times 3045 \\
& \Rightarrow {{\sigma }^{2}}=507.5 \\
\end{align}\]
Hence, option (b) is the correct answer.
Note:
One may note that, actually variance is nothing but the square of standard deviation. Standard deviation is denoted by (\[\sigma \]) and variance by (\[{{\sigma }^{2}}\]). In the above question the main problem was to use the given information to find the variance. We were to find the variance of 6 observations in which 5 were the previous observations. So, we formed different equations about these 5 observations and used them for the calculation of variance.
Complete step by step answer:
Here, we have been provided that mean of 5 observations \[{{x}_{1}},{{x}_{2}},.....,{{x}_{5}}\] is 10. Therefore, applying the formula for mean given by \[\overline{x}=\dfrac{\sum\limits_{i=1}^{n}{{{x}_{i}}}}{n}\], where ‘n’ is the number of terms and ‘\[\overline{x}\]’ is the mean, we get,
\[\Rightarrow \overline{x}=\dfrac{1}{5}\times \sum\limits_{i=1}^{5}{{{x}_{i}}=10}\] - (1)
Now, we have also been provided that standard deviation of \[{{x}_{1}},{{x}_{2}},.....,{{x}_{5}}\] is 3. Therefore, applying the formula for standard deviation, given by \[\sqrt{\dfrac{1}{n}\times \sum\limits_{i=1}^{n}{{{\left( {{x}_{1}}-\overline{x} \right)}^{2}}}}\], we get,
Standard deviation = \[\sqrt{\dfrac{1}{5}\times \sum\limits_{i=1}^{5}{{{\left( {{x}_{i}}-\overline{x} \right)}^{2}}}}\]
Substituting the value of \[\overline{x}\] from equation (1), we get,
Standard deviation = \[\sqrt{\dfrac{1}{5}\sum\limits_{i=1}^{5}{{{\left( {{x}_{i}}-10 \right)}^{2}}}}=3\]
\[\Rightarrow \sqrt{\dfrac{1}{5}\sum\limits_{i=1}^{5}{{{\left( {{x}_{i}}-10 \right)}^{2}}}}=3\]
On squaring both sides, we get,
\[\Rightarrow \dfrac{1}{5}\sum\limits_{i=1}^{5}{{{\left( {{x}_{i}}-10 \right)}^{2}}}=9\]
\[\Rightarrow \sum\limits_{i=1}^{5}{{{\left( {{x}_{i}}-10 \right)}^{2}}}=45\] - (2)
Now, we have been asked to find the variance of 6 observations \[{{x}_{1}},{{x}_{2}},.....,{{x}_{5}}\] and -50.
We know that variance of ‘n’ observation is given by the formula: -
\[{{\sigma }^{2}}=\dfrac{1}{n}\sum\limits_{i=1}^{n}{{{\left( {{x}_{i}}-\overline{x} \right)}^{2}}}\], where ‘\[\overline{x}\]’ is the mean of ‘n’ observations and ‘\[{{\sigma }^{2}}\]’ is the notation of variance.
So, we have 6 observations \[{{x}_{1}},{{x}_{2}},.....,{{x}_{5}}\] and -50. Let us calculate its mean first.
\[\Rightarrow \] Mean = \[\dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}+{{x}_{4}}+{{x}_{5}}+\left( -50 \right)}{6}\]
This can be written as,
\[\Rightarrow \] Mean = \[\dfrac{\left( \sum\limits_{i=1}^{5}{{{x}_{i}}} \right)-50}{6}\]
Now, substituting the value of \[\sum\limits_{i=1}^{5}{{{x}_{i}}}\] from equation (1), we get,
\[\Rightarrow \] Mean = \[\dfrac{5\times 10-50}{6}=\dfrac{50-50}{6}=0\]
Therefore, the mean of the given 6 observations is 0. So, the expression of variance for these 6 observation becomes,
\[\begin{align}
& \Rightarrow {{\sigma }^{2}}=\dfrac{1}{6}\sum\limits_{i=1}^{6}{x_{i}^{2}} \\
& \Rightarrow {{\sigma }^{2}}=\dfrac{1}{6}\left[ x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+x_{5}^{2}+{{\left( -50 \right)}^{2}} \right] \\
& \Rightarrow {{\sigma }^{2}}=\dfrac{1}{6}\left[ \left( \sum\limits_{i=1}^{5}{x_{i}^{2}} \right)+{{\left( -50 \right)}^{2}} \right] \\
\end{align}\]
\[\Rightarrow {{\sigma }^{2}}=\dfrac{1}{6}\left[ \sum\limits_{i=1}^{5}{x_{i}^{2}}+2500 \right]\] - (3)
Now, let us come back to equation (2), we have,
\[\Rightarrow \sum\limits_{i=1}^{5}{{{\left( {{x}_{i}}-10 \right)}^{2}}}=45\]
Applying the identity, \[{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\], we get,
\[\Rightarrow \sum\limits_{i=1}^{5}{\left( x_{i}^{2}+{{10}^{2}}-20{{x}_{i}} \right)}=45\]
\[\begin{align}
& \Rightarrow \sum\limits_{i=1}^{5}{x_{i}^{2}}+\sum\limits_{i=1}^{5}{{{10}^{2}}}-20\sum\limits_{i=1}^{5}{{{x}_{i}}}=45 \\
& \Rightarrow \sum\limits_{i=1}^{5}{x_{i}^{2}}+\sum\limits_{i=1}^{5}{100}-20\sum\limits_{i=1}^{5}{{{x}_{i}}}=45 \\
\end{align}\]
Using the value of \[\sum\limits_{i=1}^{5}{{{x}_{i}}}\] from equation (1), we get,
\[\begin{align}
& \Rightarrow \sum\limits_{i=1}^{5}{x_{i}^{2}}+100\times 5-20\times 50=45 \\
& \Rightarrow \sum\limits_{i=1}^{5}{x_{i}^{2}}+500-1000=45 \\
\end{align}\]
\[\Rightarrow \sum\limits_{i=1}^{5}{x_{i}^{2}}=545\] - (4)
Therefore, substituting the value of \[\sum\limits_{i=1}^{5}{x_{i}^{2}}\] from equation (4) in equation (3), we get,
\[\begin{align}
& \Rightarrow {{\sigma }^{2}}=\dfrac{1}{6}\left[ 545+2500 \right] \\
& \Rightarrow {{\sigma }^{2}}=\dfrac{1}{6}\times 3045 \\
& \Rightarrow {{\sigma }^{2}}=507.5 \\
\end{align}\]
Hence, option (b) is the correct answer.
Note:
One may note that, actually variance is nothing but the square of standard deviation. Standard deviation is denoted by (\[\sigma \]) and variance by (\[{{\sigma }^{2}}\]). In the above question the main problem was to use the given information to find the variance. We were to find the variance of 6 observations in which 5 were the previous observations. So, we formed different equations about these 5 observations and used them for the calculation of variance.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

