
If the linear momentum is increased by 50% then kinetic energy will be increased by
$
{\text{A}}{\text{. 50% }} \\
{\text{B}}{\text{. 100% }} \\
{\text{C}}{\text{. 125% }} \\
{\text{D}}{\text{. 25% }} \\
$
Answer
598.2k+ views
Hint:To solve this question we have to use the relation between linear momentum and kinetic energy and then use a simple calculation of percentage to solve this question easily.
Complete step-by-step answer:
We know
Linear momentum is denoted by ‘P’ and relation between linear momentum and kinetic energy is as:
$K.E = \dfrac{{{p^2}}}{{2m}}$ here we can see 2m is constant because 2 is constant and mass is always constant so kinetic energy will be proportional to square of linear momentum.
That means when we change linear momentum kinetic energy will be changed.
Now as given in the question
Linear momentum is increased by 50% that means now P will be equal to
$
P' = P + 50\% {\text{ of }}P \\
P' = P + \dfrac{{50}}{{100}} \times p \\
P' = P + \dfrac{P}{2} = \dfrac{{3P}}{2} \\
$
Kinetic energy is directly proportional to square of linear momentum
And here new linear momentum is $\dfrac{3}{2}P$ so new kinetic energy will be
$K.E' = \dfrac{{{{\left( {\dfrac{3}{2}P} \right)}^2}}}{{2m}} = \dfrac{9}{4}\left( {\dfrac{{{P^2}}}{{2m}}} \right) = \dfrac{9}{4}K.E$
Hence increased kinetic energy is $\left( {\dfrac{9}{4} - 1} \right)K.E = \dfrac{5}{4}K.E$
Hence increased percentage is $\dfrac{5}{4} \times 100 = 125\% $
Hence option C is the correct option.
Note: -Whenever we get this type of question the key concept of solving is we have to have knowledge of relation between linear momentum and kinetic energy and using new linear momentum we have to find new kinetic energy and hence find increase in kinetic energy from which increase in percentage of kinetic energy.Kinetic energy can also be written in terms of velocity i.e $K.E=\dfrac{1}{2}{m}{v^2}$.But we know linear momentum $p=mv$ simplifying this and substituting in earlier equation we get same equation only $K.E = \dfrac{{{p^2}}}{{2m}}$.
Complete step-by-step answer:
We know
Linear momentum is denoted by ‘P’ and relation between linear momentum and kinetic energy is as:
$K.E = \dfrac{{{p^2}}}{{2m}}$ here we can see 2m is constant because 2 is constant and mass is always constant so kinetic energy will be proportional to square of linear momentum.
That means when we change linear momentum kinetic energy will be changed.
Now as given in the question
Linear momentum is increased by 50% that means now P will be equal to
$
P' = P + 50\% {\text{ of }}P \\
P' = P + \dfrac{{50}}{{100}} \times p \\
P' = P + \dfrac{P}{2} = \dfrac{{3P}}{2} \\
$
Kinetic energy is directly proportional to square of linear momentum
And here new linear momentum is $\dfrac{3}{2}P$ so new kinetic energy will be
$K.E' = \dfrac{{{{\left( {\dfrac{3}{2}P} \right)}^2}}}{{2m}} = \dfrac{9}{4}\left( {\dfrac{{{P^2}}}{{2m}}} \right) = \dfrac{9}{4}K.E$
Hence increased kinetic energy is $\left( {\dfrac{9}{4} - 1} \right)K.E = \dfrac{5}{4}K.E$
Hence increased percentage is $\dfrac{5}{4} \times 100 = 125\% $
Hence option C is the correct option.
Note: -Whenever we get this type of question the key concept of solving is we have to have knowledge of relation between linear momentum and kinetic energy and using new linear momentum we have to find new kinetic energy and hence find increase in kinetic energy from which increase in percentage of kinetic energy.Kinetic energy can also be written in terms of velocity i.e $K.E=\dfrac{1}{2}{m}{v^2}$.But we know linear momentum $p=mv$ simplifying this and substituting in earlier equation we get same equation only $K.E = \dfrac{{{p^2}}}{{2m}}$.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

