Answer
Verified
434.7k+ views
Hint: To solve this question, we will first understand what are continuous functions. A function $g:A\to B$ is continuous as $a\in A$ if g (a) is well defined and \[\underset{x\to a}{\mathop{\lim }}\,\text{ }g\left( x \right)=g\left( a \right)\]
Now, in our question, as we are already given f (x) is continuous so, we only need to compare and equate $\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ f}\left( x \right)$ to $f\left( \dfrac{\pi }{4} \right)$ to get value of k. And while calculating $\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ f}\left( x \right)$ we will use L.Hospital Rule stated as
L.Hospital Rule is a method which is applicable where the obtained value is of type $\dfrac{0}{0}\Rightarrow \dfrac{\infty }{\infty }$
To apply this rule after we get $\dfrac{0}{0}\Rightarrow \dfrac{\infty }{\infty }$ form, we just differentiate both numerator and denominator separately with respect to the given function.
Complete step-by-step answer:
We are going to define f on $\left( \dfrac{\pi }{6},\dfrac{\pi }{3} \right)$ as
\[f\left( x \right)=\left\{ \begin{matrix}
\dfrac{\sqrt{2}\cos x-1}{\cot \text{ }x-1}, & x\ne \dfrac{\pi }{4} \\
k, & x\ne \dfrac{\pi }{4} \\
\end{matrix} \right.\]
Given that, f is continuous. So, first of all we will define when a function is called continuous in a given domain.
A function defined as $g:A\to B$ is called continuous for $a\in A$ every 'a' in domain if \[\underset{x\to a}{\mathop{\lim }}\,\text{ }g\left( x \right)=g\left( a \right)\] and g (a) is defined.
Or for more elaborative definition we have
\[\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,\text{ }g\left( x \right)=g\left( a \right)=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,\text{ }g\left( x \right)\]
So, for given f (x) in our question we will check for both values ${{\dfrac{\pi }{4}}^{+}}\text{ and }{{\dfrac{\pi }{4}}^{-}}$ than
\[\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\text{ f}\left( x \right)=f\left( \dfrac{\pi }{4} \right)=\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\text{ f}\left( x \right)\]
Now, here as we are given
\[f\left( x \right)=\left\{ \begin{matrix}
\dfrac{\sqrt{2}\cos x-1}{\cot \text{ }x-1}, & x\ne \dfrac{\pi }{4} \\
k, & x\ne \dfrac{\pi }{4} \\
\end{matrix} \right.\]
That is, for both ${{\dfrac{\pi }{4}}^{+}}\text{ and }{{\dfrac{\pi }{4}}^{-}}$ we have $f\left( x \right)=\dfrac{\sqrt{2}\cos x-1}{\cot \text{ }x-1}$ so we can calculate just;
\[\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ f}\left( x \right)=f\left( \dfrac{\pi }{4} \right)\]
Then, if this holds, function is continuous.
Now, as we are given f (x) is continuous
\[\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ f}\left( x \right)=f\left( \dfrac{\pi }{4} \right)\text{ holds }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
Now $f\left( \dfrac{\pi }{4} \right)=k$ and consider \[\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ f}\left( x \right)=\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ }\dfrac{\sqrt{2}\cos x-1}{\cot \text{ }x-1}\]
We have \[\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ }\dfrac{\sqrt{2}\cos x-1}{\cot \text{ }x-1}\] let it be I.
We will first try to obtain answer of the question that if after applying limit value are we getting $\dfrac{0}{0}\text{ form}\Rightarrow \dfrac{\infty }{\infty }\text{ form}$
If so then, we will apply L.Hospital Rule.
Let us define L.Hospital Rule:
L.Hospital Rule is a method which is applicable when the obtained value is of type $\dfrac{0}{0}\Rightarrow \dfrac{\infty }{\infty }$
To apply this rule after, we get $\dfrac{0}{0}\Rightarrow \dfrac{\infty }{\infty }\text{ form}$ we first differentiate both numerator and denominator separately with respect to the given function.
Here, we have \[\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ }\dfrac{\sqrt{2}\cos x-1}{\cot \text{ }x-1}=I\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)}\]
Applying \[x\to \dfrac{\pi }{4}\Rightarrow I=\dfrac{\sqrt{2}\cos \dfrac{\pi }{4}-1}{\cot \dfrac{\pi }{4}-1}\]
As value of \[\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}\] and we have $\cot \dfrac{\pi }{4}=1$
\[\begin{align}
& I=\dfrac{\sqrt{2}\left( \dfrac{1}{\sqrt{2}} \right)-1}{1-1} \\
& I=\dfrac{0}{0} \\
\end{align}\]
Hence, we have obtained $\dfrac{0}{0}\text{ form}$
Applying L.Hospital rule in equation (ii) we get:
\[I=\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ }\dfrac{\dfrac{d}{dx}\left( \sqrt{2}\cos x-1 \right)}{\dfrac{d}{dx}\left( \cot \text{ }x-1 \right)}\]
Now, value of $\dfrac{d}{dx}\cos x=-\sin x,\dfrac{d}{dx}\cot x=-\text{cose}{{\text{c}}^{\text{2}}}x\text{ and }\dfrac{d}{dx}\left( 1 \right)=0$
Using this all in above, we get:
\[\begin{align}
& I=\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ }\dfrac{-\sqrt{2}\sin x}{\text{cose}{{\text{c}}^{\text{2}}}x} \\
& I=\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ }\dfrac{\sqrt{2}\sin x}{\text{cose}{{\text{c}}^{\text{2}}}x} \\
\end{align}\]
Applying limit and using $\sin \dfrac{\pi }{4}=\sqrt{2}\text{ and cose}{{\text{c}}^{\text{2}}}\dfrac{\pi }{4}=2$ we get:
\[\begin{align}
& I=\dfrac{\sqrt{2}\sin \dfrac{\pi }{4}}{\text{cose}{{\text{c}}^{\text{2}}}\dfrac{\pi }{4}} \\
& I=\dfrac{\sqrt{2}\left( \dfrac{1}{\sqrt{2}} \right)}{2} \\
& I=\dfrac{1}{2} \\
\end{align}\]
From equation (i) we have;
\[\begin{align}
& \dfrac{1}{2}=k \\
& \Rightarrow k=\dfrac{1}{2} \\
\end{align}\]
Hence, the value of $k=\dfrac{1}{2}$
So, the correct answer is “Option A”.
Note: A possible confusion for students is how $\text{cose}{{\text{c}}^{\text{2}}}\dfrac{\pi }{4}$ became equal to 2.
We have trigonometric identity as \[\sec \theta =\dfrac{1}{\text{cosec}\theta }\Rightarrow \sin \dfrac{\pi }{4}=\dfrac{1}{\text{cose}{{\text{c}}^{\text{2}}}\dfrac{\pi }{4}}\]
Now, value of \[\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}\Rightarrow \text{cosec}\dfrac{\pi }{4}\Rightarrow \dfrac{1}{\sqrt{2}}=\dfrac{1}{\text{cosec}\dfrac{\pi }{4}}\Rightarrow \text{cosec}\dfrac{\pi }{4}=\sqrt{2}\text{ and cose}{{\text{c}}^{\text{2}}}\dfrac{\pi }{4}=\sqrt{2}-\sqrt{2}=2\]
Also, a key point to note in this question is that, we only calculated $\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ f}\left( x \right)$ and not \[\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\text{ f}\left( x \right)\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\text{ f}\left( x \right)\]
This was so because value of f (x) at ${{\dfrac{\pi }{4}}^{+}}\text{ and }{{\dfrac{\pi }{4}}^{-}}$ was same. If it is different in any other question, then we would calculate \[\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\text{ f}\left( x \right)\text{ and }\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\text{ f}\left( x \right)\] separately.
Now, in our question, as we are already given f (x) is continuous so, we only need to compare and equate $\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ f}\left( x \right)$ to $f\left( \dfrac{\pi }{4} \right)$ to get value of k. And while calculating $\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ f}\left( x \right)$ we will use L.Hospital Rule stated as
L.Hospital Rule is a method which is applicable where the obtained value is of type $\dfrac{0}{0}\Rightarrow \dfrac{\infty }{\infty }$
To apply this rule after we get $\dfrac{0}{0}\Rightarrow \dfrac{\infty }{\infty }$ form, we just differentiate both numerator and denominator separately with respect to the given function.
Complete step-by-step answer:
We are going to define f on $\left( \dfrac{\pi }{6},\dfrac{\pi }{3} \right)$ as
\[f\left( x \right)=\left\{ \begin{matrix}
\dfrac{\sqrt{2}\cos x-1}{\cot \text{ }x-1}, & x\ne \dfrac{\pi }{4} \\
k, & x\ne \dfrac{\pi }{4} \\
\end{matrix} \right.\]
Given that, f is continuous. So, first of all we will define when a function is called continuous in a given domain.
A function defined as $g:A\to B$ is called continuous for $a\in A$ every 'a' in domain if \[\underset{x\to a}{\mathop{\lim }}\,\text{ }g\left( x \right)=g\left( a \right)\] and g (a) is defined.
Or for more elaborative definition we have
\[\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,\text{ }g\left( x \right)=g\left( a \right)=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,\text{ }g\left( x \right)\]
So, for given f (x) in our question we will check for both values ${{\dfrac{\pi }{4}}^{+}}\text{ and }{{\dfrac{\pi }{4}}^{-}}$ than
\[\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\text{ f}\left( x \right)=f\left( \dfrac{\pi }{4} \right)=\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\text{ f}\left( x \right)\]
Now, here as we are given
\[f\left( x \right)=\left\{ \begin{matrix}
\dfrac{\sqrt{2}\cos x-1}{\cot \text{ }x-1}, & x\ne \dfrac{\pi }{4} \\
k, & x\ne \dfrac{\pi }{4} \\
\end{matrix} \right.\]
That is, for both ${{\dfrac{\pi }{4}}^{+}}\text{ and }{{\dfrac{\pi }{4}}^{-}}$ we have $f\left( x \right)=\dfrac{\sqrt{2}\cos x-1}{\cot \text{ }x-1}$ so we can calculate just;
\[\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ f}\left( x \right)=f\left( \dfrac{\pi }{4} \right)\]
Then, if this holds, function is continuous.
Now, as we are given f (x) is continuous
\[\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ f}\left( x \right)=f\left( \dfrac{\pi }{4} \right)\text{ holds }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
Now $f\left( \dfrac{\pi }{4} \right)=k$ and consider \[\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ f}\left( x \right)=\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ }\dfrac{\sqrt{2}\cos x-1}{\cot \text{ }x-1}\]
We have \[\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ }\dfrac{\sqrt{2}\cos x-1}{\cot \text{ }x-1}\] let it be I.
We will first try to obtain answer of the question that if after applying limit value are we getting $\dfrac{0}{0}\text{ form}\Rightarrow \dfrac{\infty }{\infty }\text{ form}$
If so then, we will apply L.Hospital Rule.
Let us define L.Hospital Rule:
L.Hospital Rule is a method which is applicable when the obtained value is of type $\dfrac{0}{0}\Rightarrow \dfrac{\infty }{\infty }$
To apply this rule after, we get $\dfrac{0}{0}\Rightarrow \dfrac{\infty }{\infty }\text{ form}$ we first differentiate both numerator and denominator separately with respect to the given function.
Here, we have \[\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ }\dfrac{\sqrt{2}\cos x-1}{\cot \text{ }x-1}=I\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)}\]
Applying \[x\to \dfrac{\pi }{4}\Rightarrow I=\dfrac{\sqrt{2}\cos \dfrac{\pi }{4}-1}{\cot \dfrac{\pi }{4}-1}\]
As value of \[\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}\] and we have $\cot \dfrac{\pi }{4}=1$
\[\begin{align}
& I=\dfrac{\sqrt{2}\left( \dfrac{1}{\sqrt{2}} \right)-1}{1-1} \\
& I=\dfrac{0}{0} \\
\end{align}\]
Hence, we have obtained $\dfrac{0}{0}\text{ form}$
Applying L.Hospital rule in equation (ii) we get:
\[I=\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ }\dfrac{\dfrac{d}{dx}\left( \sqrt{2}\cos x-1 \right)}{\dfrac{d}{dx}\left( \cot \text{ }x-1 \right)}\]
Now, value of $\dfrac{d}{dx}\cos x=-\sin x,\dfrac{d}{dx}\cot x=-\text{cose}{{\text{c}}^{\text{2}}}x\text{ and }\dfrac{d}{dx}\left( 1 \right)=0$
Using this all in above, we get:
\[\begin{align}
& I=\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ }\dfrac{-\sqrt{2}\sin x}{\text{cose}{{\text{c}}^{\text{2}}}x} \\
& I=\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ }\dfrac{\sqrt{2}\sin x}{\text{cose}{{\text{c}}^{\text{2}}}x} \\
\end{align}\]
Applying limit and using $\sin \dfrac{\pi }{4}=\sqrt{2}\text{ and cose}{{\text{c}}^{\text{2}}}\dfrac{\pi }{4}=2$ we get:
\[\begin{align}
& I=\dfrac{\sqrt{2}\sin \dfrac{\pi }{4}}{\text{cose}{{\text{c}}^{\text{2}}}\dfrac{\pi }{4}} \\
& I=\dfrac{\sqrt{2}\left( \dfrac{1}{\sqrt{2}} \right)}{2} \\
& I=\dfrac{1}{2} \\
\end{align}\]
From equation (i) we have;
\[\begin{align}
& \dfrac{1}{2}=k \\
& \Rightarrow k=\dfrac{1}{2} \\
\end{align}\]
Hence, the value of $k=\dfrac{1}{2}$
So, the correct answer is “Option A”.
Note: A possible confusion for students is how $\text{cose}{{\text{c}}^{\text{2}}}\dfrac{\pi }{4}$ became equal to 2.
We have trigonometric identity as \[\sec \theta =\dfrac{1}{\text{cosec}\theta }\Rightarrow \sin \dfrac{\pi }{4}=\dfrac{1}{\text{cose}{{\text{c}}^{\text{2}}}\dfrac{\pi }{4}}\]
Now, value of \[\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}\Rightarrow \text{cosec}\dfrac{\pi }{4}\Rightarrow \dfrac{1}{\sqrt{2}}=\dfrac{1}{\text{cosec}\dfrac{\pi }{4}}\Rightarrow \text{cosec}\dfrac{\pi }{4}=\sqrt{2}\text{ and cose}{{\text{c}}^{\text{2}}}\dfrac{\pi }{4}=\sqrt{2}-\sqrt{2}=2\]
Also, a key point to note in this question is that, we only calculated $\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ f}\left( x \right)$ and not \[\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\text{ f}\left( x \right)\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\text{ f}\left( x \right)\]
This was so because value of f (x) at ${{\dfrac{\pi }{4}}^{+}}\text{ and }{{\dfrac{\pi }{4}}^{-}}$ was same. If it is different in any other question, then we would calculate \[\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\text{ f}\left( x \right)\text{ and }\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\text{ f}\left( x \right)\] separately.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Bimbisara was the founder of dynasty A Nanda B Haryanka class 6 social science CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
10 examples of evaporation in daily life with explanations
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
Difference Between Plant Cell and Animal Cell