
If the function f defined on $\left( \dfrac{\pi }{6},\dfrac{\pi }{3} \right)$ by \[f\left( x \right)=\left\{ \begin{matrix}
\dfrac{\sqrt{2}\cos x-1}{\cot \text{ }x-1}, & x\ne \dfrac{\pi }{4} \\
k, & x\ne \dfrac{\pi }{4} \\
\end{matrix} \right.\] is continuous then k is equal to?
\[\begin{align}
& A.\dfrac{1}{2} \\
& B.1 \\
& C.\dfrac{1}{\sqrt{2}} \\
& D.2 \\
\end{align}\]
Answer
574.5k+ views
Hint: To solve this question, we will first understand what are continuous functions. A function $g:A\to B$ is continuous as $a\in A$ if g (a) is well defined and \[\underset{x\to a}{\mathop{\lim }}\,\text{ }g\left( x \right)=g\left( a \right)\]
Now, in our question, as we are already given f (x) is continuous so, we only need to compare and equate $\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ f}\left( x \right)$ to $f\left( \dfrac{\pi }{4} \right)$ to get value of k. And while calculating $\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ f}\left( x \right)$ we will use L.Hospital Rule stated as
L.Hospital Rule is a method which is applicable where the obtained value is of type $\dfrac{0}{0}\Rightarrow \dfrac{\infty }{\infty }$
To apply this rule after we get $\dfrac{0}{0}\Rightarrow \dfrac{\infty }{\infty }$ form, we just differentiate both numerator and denominator separately with respect to the given function.
Complete step-by-step answer:
We are going to define f on $\left( \dfrac{\pi }{6},\dfrac{\pi }{3} \right)$ as
\[f\left( x \right)=\left\{ \begin{matrix}
\dfrac{\sqrt{2}\cos x-1}{\cot \text{ }x-1}, & x\ne \dfrac{\pi }{4} \\
k, & x\ne \dfrac{\pi }{4} \\
\end{matrix} \right.\]
Given that, f is continuous. So, first of all we will define when a function is called continuous in a given domain.
A function defined as $g:A\to B$ is called continuous for $a\in A$ every 'a' in domain if \[\underset{x\to a}{\mathop{\lim }}\,\text{ }g\left( x \right)=g\left( a \right)\] and g (a) is defined.
Or for more elaborative definition we have
\[\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,\text{ }g\left( x \right)=g\left( a \right)=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,\text{ }g\left( x \right)\]
So, for given f (x) in our question we will check for both values ${{\dfrac{\pi }{4}}^{+}}\text{ and }{{\dfrac{\pi }{4}}^{-}}$ than
\[\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\text{ f}\left( x \right)=f\left( \dfrac{\pi }{4} \right)=\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\text{ f}\left( x \right)\]
Now, here as we are given
\[f\left( x \right)=\left\{ \begin{matrix}
\dfrac{\sqrt{2}\cos x-1}{\cot \text{ }x-1}, & x\ne \dfrac{\pi }{4} \\
k, & x\ne \dfrac{\pi }{4} \\
\end{matrix} \right.\]
That is, for both ${{\dfrac{\pi }{4}}^{+}}\text{ and }{{\dfrac{\pi }{4}}^{-}}$ we have $f\left( x \right)=\dfrac{\sqrt{2}\cos x-1}{\cot \text{ }x-1}$ so we can calculate just;
\[\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ f}\left( x \right)=f\left( \dfrac{\pi }{4} \right)\]
Then, if this holds, function is continuous.
Now, as we are given f (x) is continuous
\[\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ f}\left( x \right)=f\left( \dfrac{\pi }{4} \right)\text{ holds }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
Now $f\left( \dfrac{\pi }{4} \right)=k$ and consider \[\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ f}\left( x \right)=\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ }\dfrac{\sqrt{2}\cos x-1}{\cot \text{ }x-1}\]
We have \[\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ }\dfrac{\sqrt{2}\cos x-1}{\cot \text{ }x-1}\] let it be I.
We will first try to obtain answer of the question that if after applying limit value are we getting $\dfrac{0}{0}\text{ form}\Rightarrow \dfrac{\infty }{\infty }\text{ form}$
If so then, we will apply L.Hospital Rule.
Let us define L.Hospital Rule:
L.Hospital Rule is a method which is applicable when the obtained value is of type $\dfrac{0}{0}\Rightarrow \dfrac{\infty }{\infty }$
To apply this rule after, we get $\dfrac{0}{0}\Rightarrow \dfrac{\infty }{\infty }\text{ form}$ we first differentiate both numerator and denominator separately with respect to the given function.
Here, we have \[\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ }\dfrac{\sqrt{2}\cos x-1}{\cot \text{ }x-1}=I\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)}\]
Applying \[x\to \dfrac{\pi }{4}\Rightarrow I=\dfrac{\sqrt{2}\cos \dfrac{\pi }{4}-1}{\cot \dfrac{\pi }{4}-1}\]
As value of \[\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}\] and we have $\cot \dfrac{\pi }{4}=1$
\[\begin{align}
& I=\dfrac{\sqrt{2}\left( \dfrac{1}{\sqrt{2}} \right)-1}{1-1} \\
& I=\dfrac{0}{0} \\
\end{align}\]
Hence, we have obtained $\dfrac{0}{0}\text{ form}$
Applying L.Hospital rule in equation (ii) we get:
\[I=\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ }\dfrac{\dfrac{d}{dx}\left( \sqrt{2}\cos x-1 \right)}{\dfrac{d}{dx}\left( \cot \text{ }x-1 \right)}\]
Now, value of $\dfrac{d}{dx}\cos x=-\sin x,\dfrac{d}{dx}\cot x=-\text{cose}{{\text{c}}^{\text{2}}}x\text{ and }\dfrac{d}{dx}\left( 1 \right)=0$
Using this all in above, we get:
\[\begin{align}
& I=\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ }\dfrac{-\sqrt{2}\sin x}{\text{cose}{{\text{c}}^{\text{2}}}x} \\
& I=\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ }\dfrac{\sqrt{2}\sin x}{\text{cose}{{\text{c}}^{\text{2}}}x} \\
\end{align}\]
Applying limit and using $\sin \dfrac{\pi }{4}=\sqrt{2}\text{ and cose}{{\text{c}}^{\text{2}}}\dfrac{\pi }{4}=2$ we get:
\[\begin{align}
& I=\dfrac{\sqrt{2}\sin \dfrac{\pi }{4}}{\text{cose}{{\text{c}}^{\text{2}}}\dfrac{\pi }{4}} \\
& I=\dfrac{\sqrt{2}\left( \dfrac{1}{\sqrt{2}} \right)}{2} \\
& I=\dfrac{1}{2} \\
\end{align}\]
From equation (i) we have;
\[\begin{align}
& \dfrac{1}{2}=k \\
& \Rightarrow k=\dfrac{1}{2} \\
\end{align}\]
Hence, the value of $k=\dfrac{1}{2}$
So, the correct answer is “Option A”.
Note: A possible confusion for students is how $\text{cose}{{\text{c}}^{\text{2}}}\dfrac{\pi }{4}$ became equal to 2.
We have trigonometric identity as \[\sec \theta =\dfrac{1}{\text{cosec}\theta }\Rightarrow \sin \dfrac{\pi }{4}=\dfrac{1}{\text{cose}{{\text{c}}^{\text{2}}}\dfrac{\pi }{4}}\]
Now, value of \[\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}\Rightarrow \text{cosec}\dfrac{\pi }{4}\Rightarrow \dfrac{1}{\sqrt{2}}=\dfrac{1}{\text{cosec}\dfrac{\pi }{4}}\Rightarrow \text{cosec}\dfrac{\pi }{4}=\sqrt{2}\text{ and cose}{{\text{c}}^{\text{2}}}\dfrac{\pi }{4}=\sqrt{2}-\sqrt{2}=2\]
Also, a key point to note in this question is that, we only calculated $\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ f}\left( x \right)$ and not \[\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\text{ f}\left( x \right)\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\text{ f}\left( x \right)\]
This was so because value of f (x) at ${{\dfrac{\pi }{4}}^{+}}\text{ and }{{\dfrac{\pi }{4}}^{-}}$ was same. If it is different in any other question, then we would calculate \[\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\text{ f}\left( x \right)\text{ and }\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\text{ f}\left( x \right)\] separately.
Now, in our question, as we are already given f (x) is continuous so, we only need to compare and equate $\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ f}\left( x \right)$ to $f\left( \dfrac{\pi }{4} \right)$ to get value of k. And while calculating $\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ f}\left( x \right)$ we will use L.Hospital Rule stated as
L.Hospital Rule is a method which is applicable where the obtained value is of type $\dfrac{0}{0}\Rightarrow \dfrac{\infty }{\infty }$
To apply this rule after we get $\dfrac{0}{0}\Rightarrow \dfrac{\infty }{\infty }$ form, we just differentiate both numerator and denominator separately with respect to the given function.
Complete step-by-step answer:
We are going to define f on $\left( \dfrac{\pi }{6},\dfrac{\pi }{3} \right)$ as
\[f\left( x \right)=\left\{ \begin{matrix}
\dfrac{\sqrt{2}\cos x-1}{\cot \text{ }x-1}, & x\ne \dfrac{\pi }{4} \\
k, & x\ne \dfrac{\pi }{4} \\
\end{matrix} \right.\]
Given that, f is continuous. So, first of all we will define when a function is called continuous in a given domain.
A function defined as $g:A\to B$ is called continuous for $a\in A$ every 'a' in domain if \[\underset{x\to a}{\mathop{\lim }}\,\text{ }g\left( x \right)=g\left( a \right)\] and g (a) is defined.
Or for more elaborative definition we have
\[\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,\text{ }g\left( x \right)=g\left( a \right)=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,\text{ }g\left( x \right)\]
So, for given f (x) in our question we will check for both values ${{\dfrac{\pi }{4}}^{+}}\text{ and }{{\dfrac{\pi }{4}}^{-}}$ than
\[\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\text{ f}\left( x \right)=f\left( \dfrac{\pi }{4} \right)=\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\text{ f}\left( x \right)\]
Now, here as we are given
\[f\left( x \right)=\left\{ \begin{matrix}
\dfrac{\sqrt{2}\cos x-1}{\cot \text{ }x-1}, & x\ne \dfrac{\pi }{4} \\
k, & x\ne \dfrac{\pi }{4} \\
\end{matrix} \right.\]
That is, for both ${{\dfrac{\pi }{4}}^{+}}\text{ and }{{\dfrac{\pi }{4}}^{-}}$ we have $f\left( x \right)=\dfrac{\sqrt{2}\cos x-1}{\cot \text{ }x-1}$ so we can calculate just;
\[\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ f}\left( x \right)=f\left( \dfrac{\pi }{4} \right)\]
Then, if this holds, function is continuous.
Now, as we are given f (x) is continuous
\[\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ f}\left( x \right)=f\left( \dfrac{\pi }{4} \right)\text{ holds }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
Now $f\left( \dfrac{\pi }{4} \right)=k$ and consider \[\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ f}\left( x \right)=\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ }\dfrac{\sqrt{2}\cos x-1}{\cot \text{ }x-1}\]
We have \[\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ }\dfrac{\sqrt{2}\cos x-1}{\cot \text{ }x-1}\] let it be I.
We will first try to obtain answer of the question that if after applying limit value are we getting $\dfrac{0}{0}\text{ form}\Rightarrow \dfrac{\infty }{\infty }\text{ form}$
If so then, we will apply L.Hospital Rule.
Let us define L.Hospital Rule:
L.Hospital Rule is a method which is applicable when the obtained value is of type $\dfrac{0}{0}\Rightarrow \dfrac{\infty }{\infty }$
To apply this rule after, we get $\dfrac{0}{0}\Rightarrow \dfrac{\infty }{\infty }\text{ form}$ we first differentiate both numerator and denominator separately with respect to the given function.
Here, we have \[\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ }\dfrac{\sqrt{2}\cos x-1}{\cot \text{ }x-1}=I\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)}\]
Applying \[x\to \dfrac{\pi }{4}\Rightarrow I=\dfrac{\sqrt{2}\cos \dfrac{\pi }{4}-1}{\cot \dfrac{\pi }{4}-1}\]
As value of \[\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}\] and we have $\cot \dfrac{\pi }{4}=1$
\[\begin{align}
& I=\dfrac{\sqrt{2}\left( \dfrac{1}{\sqrt{2}} \right)-1}{1-1} \\
& I=\dfrac{0}{0} \\
\end{align}\]
Hence, we have obtained $\dfrac{0}{0}\text{ form}$
Applying L.Hospital rule in equation (ii) we get:
\[I=\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ }\dfrac{\dfrac{d}{dx}\left( \sqrt{2}\cos x-1 \right)}{\dfrac{d}{dx}\left( \cot \text{ }x-1 \right)}\]
Now, value of $\dfrac{d}{dx}\cos x=-\sin x,\dfrac{d}{dx}\cot x=-\text{cose}{{\text{c}}^{\text{2}}}x\text{ and }\dfrac{d}{dx}\left( 1 \right)=0$
Using this all in above, we get:
\[\begin{align}
& I=\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ }\dfrac{-\sqrt{2}\sin x}{\text{cose}{{\text{c}}^{\text{2}}}x} \\
& I=\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ }\dfrac{\sqrt{2}\sin x}{\text{cose}{{\text{c}}^{\text{2}}}x} \\
\end{align}\]
Applying limit and using $\sin \dfrac{\pi }{4}=\sqrt{2}\text{ and cose}{{\text{c}}^{\text{2}}}\dfrac{\pi }{4}=2$ we get:
\[\begin{align}
& I=\dfrac{\sqrt{2}\sin \dfrac{\pi }{4}}{\text{cose}{{\text{c}}^{\text{2}}}\dfrac{\pi }{4}} \\
& I=\dfrac{\sqrt{2}\left( \dfrac{1}{\sqrt{2}} \right)}{2} \\
& I=\dfrac{1}{2} \\
\end{align}\]
From equation (i) we have;
\[\begin{align}
& \dfrac{1}{2}=k \\
& \Rightarrow k=\dfrac{1}{2} \\
\end{align}\]
Hence, the value of $k=\dfrac{1}{2}$
So, the correct answer is “Option A”.
Note: A possible confusion for students is how $\text{cose}{{\text{c}}^{\text{2}}}\dfrac{\pi }{4}$ became equal to 2.
We have trigonometric identity as \[\sec \theta =\dfrac{1}{\text{cosec}\theta }\Rightarrow \sin \dfrac{\pi }{4}=\dfrac{1}{\text{cose}{{\text{c}}^{\text{2}}}\dfrac{\pi }{4}}\]
Now, value of \[\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}\Rightarrow \text{cosec}\dfrac{\pi }{4}\Rightarrow \dfrac{1}{\sqrt{2}}=\dfrac{1}{\text{cosec}\dfrac{\pi }{4}}\Rightarrow \text{cosec}\dfrac{\pi }{4}=\sqrt{2}\text{ and cose}{{\text{c}}^{\text{2}}}\dfrac{\pi }{4}=\sqrt{2}-\sqrt{2}=2\]
Also, a key point to note in this question is that, we only calculated $\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ f}\left( x \right)$ and not \[\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\text{ f}\left( x \right)\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\text{ f}\left( x \right)\]
This was so because value of f (x) at ${{\dfrac{\pi }{4}}^{+}}\text{ and }{{\dfrac{\pi }{4}}^{-}}$ was same. If it is different in any other question, then we would calculate \[\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\text{ f}\left( x \right)\text{ and }\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\text{ f}\left( x \right)\] separately.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

