
If the fourth term in the expansion of ${{\left( \sqrt{{{x}^{\dfrac{1}{\log x+1}}}}+{{x}^{\dfrac{1}{12}}} \right)}^{6}}$ is equal to $200$ and $x>1$ , then $x$ is
A. $10$
B. ${{10}^{-4}}$
C. $1$
D. $-4$
Answer
610.8k+ views
Hint: ${{T}_{4}}$ is given. Solve it as ${{T}_{3+1}}$ you will get the value of $x$. Use ${{T}_{3+1}}$ as ${{(r+1)}^{th}}$ term and solve it.
Complete step by step answer:
So from the above question we got to know that the value of ${{T}_{4}}$ is given i.e. $200$ . We have to find the value of $x$ . So for finding the value of $x$ We have to use the ${{(r+1)}^{th}}$ term which is given below.
So ${{T}_{4}}=200$ ……….. (1)
So if we take a ${{(a+b)}^{n}}$ ,
We know we get the value of ${{T}_{r+1}}$ ,
So the value of ${{T}_{r+1}}$ is as follows,
i.e ${{T}_{r+1}}{{=}^{n}}{{c}_{r}}{{a}^{n-r}}{{b}^{r}}$ …………. (So this is ${{(r+1)}^{th}}$ term)…….. (2)
So here $a=\sqrt{{{x}^{\dfrac{1}{\log x+1}}}}$ and $b={{x}^{\dfrac{1}{12}}}$ ………… (3)
So from (1) i.e. ${{T}_{4}}$ we can write it as,
${{T}_{3+1}}=200$ ….. (4)
Where we get $r=3,$
So we have to apply this ${{(r+1)}^{th}}$ term, So applying it we it as follows,
So from (2), (3) and (4), We get,
${{T}_{3+1}}{{=}^{6}}{{c}_{3}}{{\left[ \sqrt{{{x}^{\dfrac{1}{\log x+1}}}} \right]}^{(6-3)}}{{({{x}^{\dfrac{1}{12}}})}^{3}}=200$
So simplifying we get,
$\dfrac{6\times 5\times 4}{3\times 2\times 1}{{\left[ \sqrt{{{x}^{\dfrac{1}{\log x+1}}}} \right]}^{(3)}}({{x}^{\dfrac{1}{4}}})=200$
$(5\times 4){{\left[ \sqrt{{{x}^{\dfrac{1}{\log x+1}}}} \right]}^{(3)}}({{x}^{\dfrac{1}{4}}})=200$
So simplifying we get,
$(20){{\left( {{x}^{\dfrac{1}{\log x+1}}} \right)}^{\left( \dfrac{3}{2} \right)}}({{x}^{\dfrac{1}{4}}})=200$
Dividing above Whole equation by $20$ , We get,
${{\left( {{x}^{\dfrac{1}{\log x+1}}} \right)}^{\left( \dfrac{3}{2} \right)}}({{x}^{\dfrac{1}{4}}})=\dfrac{200}{20}$
${{\left( {{x}^{\dfrac{1}{\log x+1}}} \right)}^{\left( \dfrac{3}{2} \right)}}({{x}^{\dfrac{1}{4}}})=10$
So simplifying in simple manner we get,
$\left( {{x}^{\dfrac{3}{2(\log x+1)}}} \right)({{x}^{\dfrac{1}{4}}})=10$………. (5)
We know the property,
${{a}^{m}}{{a}^{n}}={{a}^{m+n}}$
So we have to apply the above property,
So applying the property we get,
So using the above property in (5), We get,
$\left( {{x}^{\dfrac{3}{2(\log x+1)}+\dfrac{1}{4}}} \right)=10$
Also we know the property ${{a}^{{{\log }_{a}}6}}=6$ So applying same property we get,
$\left( {{x}^{\dfrac{3}{2(\log x+1)}+\dfrac{1}{4}}} \right)={{x}^{{{\log }_{x}}10}}=10$
So equating we get,
$\dfrac{3}{2(\log x+1)}+\dfrac{1}{4}={{\log }_{x}}10$
So writing ${{\log }_{x}}10=\dfrac{1}{{{\log }_{10}}x}$ .
Now let us substitute \[{{\log }_{10}}x=y\],
So Substituting above we get,
$\dfrac{3}{2(y+1)}+\dfrac{1}{4}=\dfrac{1}{y}$
So simplifying it we get, i.e. taking LCM,
We get it as,
$\dfrac{3\times 2}{2\times 2(y+1)}+\dfrac{(y+1)}{4\times (y+1)}=\dfrac{1}{y}$
$\dfrac{6+y+1}{4(y+1)}=\dfrac{1}{y}$
So now cross multiplying,
we get it as follows,
$(6+y+1)\times y=4(y+1)$
$\begin{align}
& 6y+{{y}^{2}}+y=4y+4 \\
& {{y}^{2}}+7y-4y-4=0 \\
& {{y}^{2}}+3y-4=0 \\
& {{y}^{2}}+4y-y-4=0 \\
& y(y+4)-(y+4)=0 \\
& (y+4)(y-1)=0 \\
\end{align}$
So we get from above the value of $y$ ,
$y=-4$ and $y=1$
We know that ${{\log }_{10}}x=y$,
So We also get $y=-4$,
$\begin{align}
& {{\log }_{10}}x=-4 \\
& x={{10}^{-4}} \\
\end{align}$
For $y=1$
$\begin{align}
& {{\log }_{10}}x=1 \\
& x=10 \\
\end{align}$
Since, $x>1$ , so the value of $x=10$ .
Option (A) is correct.
Note: Be familiar with the expansion and ${{T}_{r+1}}{{=}^{n}}{{c}_{r}}{{a}^{n-r}}{{b}^{r}}$ remember this ${{(r+1)}^{th}}$ term.
You should know the properties of log so you can solve the sum. The properties such as ${{\log }_{x}}10=\dfrac{1}{{{\log }_{10}}x}$ etc. Also be familiar with ${{a}^{m}}{{a}^{n}}={{a}^{m+n}}$ this property. While solving, take care of conversions.
Complete step by step answer:
So from the above question we got to know that the value of ${{T}_{4}}$ is given i.e. $200$ . We have to find the value of $x$ . So for finding the value of $x$ We have to use the ${{(r+1)}^{th}}$ term which is given below.
So ${{T}_{4}}=200$ ……….. (1)
So if we take a ${{(a+b)}^{n}}$ ,
We know we get the value of ${{T}_{r+1}}$ ,
So the value of ${{T}_{r+1}}$ is as follows,
i.e ${{T}_{r+1}}{{=}^{n}}{{c}_{r}}{{a}^{n-r}}{{b}^{r}}$ …………. (So this is ${{(r+1)}^{th}}$ term)…….. (2)
So here $a=\sqrt{{{x}^{\dfrac{1}{\log x+1}}}}$ and $b={{x}^{\dfrac{1}{12}}}$ ………… (3)
So from (1) i.e. ${{T}_{4}}$ we can write it as,
${{T}_{3+1}}=200$ ….. (4)
Where we get $r=3,$
So we have to apply this ${{(r+1)}^{th}}$ term, So applying it we it as follows,
So from (2), (3) and (4), We get,
${{T}_{3+1}}{{=}^{6}}{{c}_{3}}{{\left[ \sqrt{{{x}^{\dfrac{1}{\log x+1}}}} \right]}^{(6-3)}}{{({{x}^{\dfrac{1}{12}}})}^{3}}=200$
So simplifying we get,
$\dfrac{6\times 5\times 4}{3\times 2\times 1}{{\left[ \sqrt{{{x}^{\dfrac{1}{\log x+1}}}} \right]}^{(3)}}({{x}^{\dfrac{1}{4}}})=200$
$(5\times 4){{\left[ \sqrt{{{x}^{\dfrac{1}{\log x+1}}}} \right]}^{(3)}}({{x}^{\dfrac{1}{4}}})=200$
So simplifying we get,
$(20){{\left( {{x}^{\dfrac{1}{\log x+1}}} \right)}^{\left( \dfrac{3}{2} \right)}}({{x}^{\dfrac{1}{4}}})=200$
Dividing above Whole equation by $20$ , We get,
${{\left( {{x}^{\dfrac{1}{\log x+1}}} \right)}^{\left( \dfrac{3}{2} \right)}}({{x}^{\dfrac{1}{4}}})=\dfrac{200}{20}$
${{\left( {{x}^{\dfrac{1}{\log x+1}}} \right)}^{\left( \dfrac{3}{2} \right)}}({{x}^{\dfrac{1}{4}}})=10$
So simplifying in simple manner we get,
$\left( {{x}^{\dfrac{3}{2(\log x+1)}}} \right)({{x}^{\dfrac{1}{4}}})=10$………. (5)
We know the property,
${{a}^{m}}{{a}^{n}}={{a}^{m+n}}$
So we have to apply the above property,
So applying the property we get,
So using the above property in (5), We get,
$\left( {{x}^{\dfrac{3}{2(\log x+1)}+\dfrac{1}{4}}} \right)=10$
Also we know the property ${{a}^{{{\log }_{a}}6}}=6$ So applying same property we get,
$\left( {{x}^{\dfrac{3}{2(\log x+1)}+\dfrac{1}{4}}} \right)={{x}^{{{\log }_{x}}10}}=10$
So equating we get,
$\dfrac{3}{2(\log x+1)}+\dfrac{1}{4}={{\log }_{x}}10$
So writing ${{\log }_{x}}10=\dfrac{1}{{{\log }_{10}}x}$ .
Now let us substitute \[{{\log }_{10}}x=y\],
So Substituting above we get,
$\dfrac{3}{2(y+1)}+\dfrac{1}{4}=\dfrac{1}{y}$
So simplifying it we get, i.e. taking LCM,
We get it as,
$\dfrac{3\times 2}{2\times 2(y+1)}+\dfrac{(y+1)}{4\times (y+1)}=\dfrac{1}{y}$
$\dfrac{6+y+1}{4(y+1)}=\dfrac{1}{y}$
So now cross multiplying,
we get it as follows,
$(6+y+1)\times y=4(y+1)$
$\begin{align}
& 6y+{{y}^{2}}+y=4y+4 \\
& {{y}^{2}}+7y-4y-4=0 \\
& {{y}^{2}}+3y-4=0 \\
& {{y}^{2}}+4y-y-4=0 \\
& y(y+4)-(y+4)=0 \\
& (y+4)(y-1)=0 \\
\end{align}$
So we get from above the value of $y$ ,
$y=-4$ and $y=1$
We know that ${{\log }_{10}}x=y$,
So We also get $y=-4$,
$\begin{align}
& {{\log }_{10}}x=-4 \\
& x={{10}^{-4}} \\
\end{align}$
For $y=1$
$\begin{align}
& {{\log }_{10}}x=1 \\
& x=10 \\
\end{align}$
Since, $x>1$ , so the value of $x=10$ .
Option (A) is correct.
Note: Be familiar with the expansion and ${{T}_{r+1}}{{=}^{n}}{{c}_{r}}{{a}^{n-r}}{{b}^{r}}$ remember this ${{(r+1)}^{th}}$ term.
You should know the properties of log so you can solve the sum. The properties such as ${{\log }_{x}}10=\dfrac{1}{{{\log }_{10}}x}$ etc. Also be familiar with ${{a}^{m}}{{a}^{n}}={{a}^{m+n}}$ this property. While solving, take care of conversions.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

