
If the equation $\left( {{m}^{2}}+{{n}^{2}} \right){{x}^{2}}-2\left( mp+nq \right)x+{{p}^{2}}+{{q}^{2}}=0$ has equal roots, then
[a] mp = nq
[b] mq = np
[c] mn = pq
[d] $mq=\sqrt{np}$
Answer
516.6k+ views
Hint: Assume that the roots of the equation are $\alpha ,\alpha $. Hence using the sum of roots $=\dfrac{-b}{a}$ and product of roots $=\dfrac{c}{a}$, where a,b and c have their usual meanings form two equations in $\alpha $. One of the equations will be linear in $\alpha $ , and one will be quadratic in $\alpha $. Substitute the value of $\alpha $ from the linear equation in the quadratic equation in $\alpha $ and find the relation between m, n, p and q.
Alternatively, use the fact that when roots are equal, then Discriminant of that quadratic equation is 0.
Complete step-by-step solution -
Let the roots of the quadratic equation be $\alpha .\alpha $
Hence we have
$\begin{align}
& \alpha +\alpha =\dfrac{2\left( mp+nq \right)}{{{m}^{2}}+{{n}^{2}}} \\
& \Rightarrow \alpha =\dfrac{mp+nq}{{{m}^{2}}+{{n}^{2}}}\text{ (i)} \\
\end{align}$
Also, we have
$\begin{align}
& \alpha \times \alpha =\dfrac{{{p}^{2}}+{{q}^{2}}}{{{m}^{2}}+{{n}^{2}}} \\
& \Rightarrow {{\alpha }^{2}}=\dfrac{{{p}^{2}}+{{q}^{2}}}{{{m}^{2}}+{{n}^{2}}}\text{ (ii)} \\
\end{align}$
Substituting the value of $\alpha $ from equation (ii) in equation (i), we get
${{\left( \dfrac{mp+nq}{{{m}^{2}}+{{n}^{2}}} \right)}^{2}}=\dfrac{{{p}^{2}}+{{q}^{2}}}{{{m}^{2}}+{{n}^{2}}}$
Multiplying both sides by ${{\left( {{m}^{2}}+{{n}^{2}} \right)}^{2}}$, we get
${{\left( mp+nq \right)}^{2}}=\left( {{p}^{2}}+{{q}^{2}} \right)\left( {{m}^{2}}+{{n}^{2}} \right)$
Using ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$, we get
${{\left( mp \right)}^{2}}+{{\left( nq \right)}^{2}}+2\left( mp \right)\left( nq \right)={{p}^{2}}{{m}^{2}}+{{p}^{2}}{{n}^{2}}+{{q}^{2}}{{m}^{2}}+{{q}^{2}}{{n}^{2}}$
Using ${{\left( ab \right)}^{n}}={{a}^{n}}{{b}^{n}}$, we get
${{m}^{2}}{{p}^{2}}+{{n}^{2}}{{q}^{2}}+2mnpq={{m}^{2}}{{p}^{2}}+{{n}^{2}}{{q}^{2}}+{{m}^{2}}{{q}^{2}}+{{n}^{2}}{{p}^{2}}$
Subtracting ${{m}^{2}}{{p}^{2}}+{{n}^{2}}{{q}^{2}}$ from both sides, we get
$2mnpq={{m}^{2}}{{q}^{2}}+{{n}^{2}}{{p}^{2}}$
Subtracting 2mnpq from both sides, we get
${{m}^{2}}{{q}^{2}}+{{n}^{2}}{{p}^{2}}-2mnpq=0$
Using ${{a}^{n}}{{b}^{n}}={{\left( ab \right)}^{n}}$, we get
${{\left( mq \right)}^{2}}+{{\left( np \right)}^{2}}-2\left( mq \right)\left( np \right)=0$
Using ${{a}^{2}}+{{b}^{2}}-2ab={{\left( a-b \right)}^{2}}$, we get
${{\left( mq-np \right)}^{2}}=0$
Using zero product property, we get
$mq=np$
Hence option [b] is correct.
Note: Alternative solution:
We know that the roots of the quadratic expression $a{{x}^{2}}+bx+c=0$ are equal when $D={{b}^{2}}-4ac=0$
Here $a={{m}^{2}}+{{n}^{2}},b=-2\left( mp+nq \right)$ and $c={{p}^{2}}+{{q}^{2}}$
Hence we have
$\begin{align}
& 4{{\left( mp+nq \right)}^{2}}-4\left( {{p}^{2}}+{{q}^{2}} \right)\left( {{m}^{2}}+{{n}^{2}} \right)=0 \\
& \Rightarrow {{\left( mp+nq \right)}^{2}}-\left( {{p}^{2}}+{{q}^{2}} \right)\left( {{m}^{2}}+{{n}^{2}} \right)=0 \\
\end{align}$
Let ${{z}_{1}}=p-iq$ and ${{z}_{2}}=m+in$
Now we have ${{z}_{1}}{{z}_{2}}=\left( mp+nq \right)+i\left( np-mq \right)$
Taking modulus on both sides, we get
$\begin{align}
& \left| {{z}_{1}}{{z}_{2}} \right|=\left| \left( mp+nq \right)+i\left( np-mq \right) \right| \\
& \Rightarrow \sqrt{\left( {{m}^{2}}+{{n}^{2}} \right)\left( {{p}^{2}}+{{q}^{2}} \right)}=\sqrt{{{\left( mp+nq \right)}^{2}}+{{\left( np-mq \right)}^{2}}} \\
& \Rightarrow \left( {{m}^{2}}+{{n}^{2}} \right)\left( {{p}^{2}}+{{q}^{2}} \right)={{\left( mp+nq \right)}^{2}}+{{\left( np-mq \right)}^{2}} \\
\end{align}$
Hence we have
$\begin{align}
& {{\left( mp+nq \right)}^{2}}-{{\left( mp+nq \right)}^{2}}-{{\left( np-mq \right)}^{2}}=0 \\
& \Rightarrow {{\left( np-mq \right)}^{2}}=0 \\
& \Rightarrow np=mq \\
\end{align}$
Hence option [b] is correct.
Alternatively, use the fact that when roots are equal, then Discriminant of that quadratic equation is 0.
Complete step-by-step solution -
Let the roots of the quadratic equation be $\alpha .\alpha $
Hence we have
$\begin{align}
& \alpha +\alpha =\dfrac{2\left( mp+nq \right)}{{{m}^{2}}+{{n}^{2}}} \\
& \Rightarrow \alpha =\dfrac{mp+nq}{{{m}^{2}}+{{n}^{2}}}\text{ (i)} \\
\end{align}$
Also, we have
$\begin{align}
& \alpha \times \alpha =\dfrac{{{p}^{2}}+{{q}^{2}}}{{{m}^{2}}+{{n}^{2}}} \\
& \Rightarrow {{\alpha }^{2}}=\dfrac{{{p}^{2}}+{{q}^{2}}}{{{m}^{2}}+{{n}^{2}}}\text{ (ii)} \\
\end{align}$
Substituting the value of $\alpha $ from equation (ii) in equation (i), we get
${{\left( \dfrac{mp+nq}{{{m}^{2}}+{{n}^{2}}} \right)}^{2}}=\dfrac{{{p}^{2}}+{{q}^{2}}}{{{m}^{2}}+{{n}^{2}}}$
Multiplying both sides by ${{\left( {{m}^{2}}+{{n}^{2}} \right)}^{2}}$, we get
${{\left( mp+nq \right)}^{2}}=\left( {{p}^{2}}+{{q}^{2}} \right)\left( {{m}^{2}}+{{n}^{2}} \right)$
Using ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$, we get
${{\left( mp \right)}^{2}}+{{\left( nq \right)}^{2}}+2\left( mp \right)\left( nq \right)={{p}^{2}}{{m}^{2}}+{{p}^{2}}{{n}^{2}}+{{q}^{2}}{{m}^{2}}+{{q}^{2}}{{n}^{2}}$
Using ${{\left( ab \right)}^{n}}={{a}^{n}}{{b}^{n}}$, we get
${{m}^{2}}{{p}^{2}}+{{n}^{2}}{{q}^{2}}+2mnpq={{m}^{2}}{{p}^{2}}+{{n}^{2}}{{q}^{2}}+{{m}^{2}}{{q}^{2}}+{{n}^{2}}{{p}^{2}}$
Subtracting ${{m}^{2}}{{p}^{2}}+{{n}^{2}}{{q}^{2}}$ from both sides, we get
$2mnpq={{m}^{2}}{{q}^{2}}+{{n}^{2}}{{p}^{2}}$
Subtracting 2mnpq from both sides, we get
${{m}^{2}}{{q}^{2}}+{{n}^{2}}{{p}^{2}}-2mnpq=0$
Using ${{a}^{n}}{{b}^{n}}={{\left( ab \right)}^{n}}$, we get
${{\left( mq \right)}^{2}}+{{\left( np \right)}^{2}}-2\left( mq \right)\left( np \right)=0$
Using ${{a}^{2}}+{{b}^{2}}-2ab={{\left( a-b \right)}^{2}}$, we get
${{\left( mq-np \right)}^{2}}=0$
Using zero product property, we get
$mq=np$
Hence option [b] is correct.
Note: Alternative solution:
We know that the roots of the quadratic expression $a{{x}^{2}}+bx+c=0$ are equal when $D={{b}^{2}}-4ac=0$
Here $a={{m}^{2}}+{{n}^{2}},b=-2\left( mp+nq \right)$ and $c={{p}^{2}}+{{q}^{2}}$
Hence we have
$\begin{align}
& 4{{\left( mp+nq \right)}^{2}}-4\left( {{p}^{2}}+{{q}^{2}} \right)\left( {{m}^{2}}+{{n}^{2}} \right)=0 \\
& \Rightarrow {{\left( mp+nq \right)}^{2}}-\left( {{p}^{2}}+{{q}^{2}} \right)\left( {{m}^{2}}+{{n}^{2}} \right)=0 \\
\end{align}$
Let ${{z}_{1}}=p-iq$ and ${{z}_{2}}=m+in$
Now we have ${{z}_{1}}{{z}_{2}}=\left( mp+nq \right)+i\left( np-mq \right)$
Taking modulus on both sides, we get
$\begin{align}
& \left| {{z}_{1}}{{z}_{2}} \right|=\left| \left( mp+nq \right)+i\left( np-mq \right) \right| \\
& \Rightarrow \sqrt{\left( {{m}^{2}}+{{n}^{2}} \right)\left( {{p}^{2}}+{{q}^{2}} \right)}=\sqrt{{{\left( mp+nq \right)}^{2}}+{{\left( np-mq \right)}^{2}}} \\
& \Rightarrow \left( {{m}^{2}}+{{n}^{2}} \right)\left( {{p}^{2}}+{{q}^{2}} \right)={{\left( mp+nq \right)}^{2}}+{{\left( np-mq \right)}^{2}} \\
\end{align}$
Hence we have
$\begin{align}
& {{\left( mp+nq \right)}^{2}}-{{\left( mp+nq \right)}^{2}}-{{\left( np-mq \right)}^{2}}=0 \\
& \Rightarrow {{\left( np-mq \right)}^{2}}=0 \\
& \Rightarrow np=mq \\
\end{align}$
Hence option [b] is correct.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

Raindrops are spherical because of A Gravitational class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Why is steel more elastic than rubber class 11 physics CBSE

Explain why a There is no atmosphere on the moon b class 11 physics CBSE
