
If the equation $\left( {{m}^{2}}+{{n}^{2}} \right){{x}^{2}}-2\left( mp+nq \right)x+{{p}^{2}}+{{q}^{2}}=0$ has equal roots, then
[a] mp = nq
[b] mq = np
[c] mn = pq
[d] $mq=\sqrt{np}$
Answer
599.1k+ views
Hint: Assume that the roots of the equation are $\alpha ,\alpha $. Hence using the sum of roots $=\dfrac{-b}{a}$ and product of roots $=\dfrac{c}{a}$, where a,b and c have their usual meanings form two equations in $\alpha $. One of the equations will be linear in $\alpha $ , and one will be quadratic in $\alpha $. Substitute the value of $\alpha $ from the linear equation in the quadratic equation in $\alpha $ and find the relation between m, n, p and q.
Alternatively, use the fact that when roots are equal, then Discriminant of that quadratic equation is 0.
Complete step-by-step solution -
Let the roots of the quadratic equation be $\alpha .\alpha $
Hence we have
$\begin{align}
& \alpha +\alpha =\dfrac{2\left( mp+nq \right)}{{{m}^{2}}+{{n}^{2}}} \\
& \Rightarrow \alpha =\dfrac{mp+nq}{{{m}^{2}}+{{n}^{2}}}\text{ (i)} \\
\end{align}$
Also, we have
$\begin{align}
& \alpha \times \alpha =\dfrac{{{p}^{2}}+{{q}^{2}}}{{{m}^{2}}+{{n}^{2}}} \\
& \Rightarrow {{\alpha }^{2}}=\dfrac{{{p}^{2}}+{{q}^{2}}}{{{m}^{2}}+{{n}^{2}}}\text{ (ii)} \\
\end{align}$
Substituting the value of $\alpha $ from equation (ii) in equation (i), we get
${{\left( \dfrac{mp+nq}{{{m}^{2}}+{{n}^{2}}} \right)}^{2}}=\dfrac{{{p}^{2}}+{{q}^{2}}}{{{m}^{2}}+{{n}^{2}}}$
Multiplying both sides by ${{\left( {{m}^{2}}+{{n}^{2}} \right)}^{2}}$, we get
${{\left( mp+nq \right)}^{2}}=\left( {{p}^{2}}+{{q}^{2}} \right)\left( {{m}^{2}}+{{n}^{2}} \right)$
Using ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$, we get
${{\left( mp \right)}^{2}}+{{\left( nq \right)}^{2}}+2\left( mp \right)\left( nq \right)={{p}^{2}}{{m}^{2}}+{{p}^{2}}{{n}^{2}}+{{q}^{2}}{{m}^{2}}+{{q}^{2}}{{n}^{2}}$
Using ${{\left( ab \right)}^{n}}={{a}^{n}}{{b}^{n}}$, we get
${{m}^{2}}{{p}^{2}}+{{n}^{2}}{{q}^{2}}+2mnpq={{m}^{2}}{{p}^{2}}+{{n}^{2}}{{q}^{2}}+{{m}^{2}}{{q}^{2}}+{{n}^{2}}{{p}^{2}}$
Subtracting ${{m}^{2}}{{p}^{2}}+{{n}^{2}}{{q}^{2}}$ from both sides, we get
$2mnpq={{m}^{2}}{{q}^{2}}+{{n}^{2}}{{p}^{2}}$
Subtracting 2mnpq from both sides, we get
${{m}^{2}}{{q}^{2}}+{{n}^{2}}{{p}^{2}}-2mnpq=0$
Using ${{a}^{n}}{{b}^{n}}={{\left( ab \right)}^{n}}$, we get
${{\left( mq \right)}^{2}}+{{\left( np \right)}^{2}}-2\left( mq \right)\left( np \right)=0$
Using ${{a}^{2}}+{{b}^{2}}-2ab={{\left( a-b \right)}^{2}}$, we get
${{\left( mq-np \right)}^{2}}=0$
Using zero product property, we get
$mq=np$
Hence option [b] is correct.
Note: Alternative solution:
We know that the roots of the quadratic expression $a{{x}^{2}}+bx+c=0$ are equal when $D={{b}^{2}}-4ac=0$
Here $a={{m}^{2}}+{{n}^{2}},b=-2\left( mp+nq \right)$ and $c={{p}^{2}}+{{q}^{2}}$
Hence we have
$\begin{align}
& 4{{\left( mp+nq \right)}^{2}}-4\left( {{p}^{2}}+{{q}^{2}} \right)\left( {{m}^{2}}+{{n}^{2}} \right)=0 \\
& \Rightarrow {{\left( mp+nq \right)}^{2}}-\left( {{p}^{2}}+{{q}^{2}} \right)\left( {{m}^{2}}+{{n}^{2}} \right)=0 \\
\end{align}$
Let ${{z}_{1}}=p-iq$ and ${{z}_{2}}=m+in$
Now we have ${{z}_{1}}{{z}_{2}}=\left( mp+nq \right)+i\left( np-mq \right)$
Taking modulus on both sides, we get
$\begin{align}
& \left| {{z}_{1}}{{z}_{2}} \right|=\left| \left( mp+nq \right)+i\left( np-mq \right) \right| \\
& \Rightarrow \sqrt{\left( {{m}^{2}}+{{n}^{2}} \right)\left( {{p}^{2}}+{{q}^{2}} \right)}=\sqrt{{{\left( mp+nq \right)}^{2}}+{{\left( np-mq \right)}^{2}}} \\
& \Rightarrow \left( {{m}^{2}}+{{n}^{2}} \right)\left( {{p}^{2}}+{{q}^{2}} \right)={{\left( mp+nq \right)}^{2}}+{{\left( np-mq \right)}^{2}} \\
\end{align}$
Hence we have
$\begin{align}
& {{\left( mp+nq \right)}^{2}}-{{\left( mp+nq \right)}^{2}}-{{\left( np-mq \right)}^{2}}=0 \\
& \Rightarrow {{\left( np-mq \right)}^{2}}=0 \\
& \Rightarrow np=mq \\
\end{align}$
Hence option [b] is correct.
Alternatively, use the fact that when roots are equal, then Discriminant of that quadratic equation is 0.
Complete step-by-step solution -
Let the roots of the quadratic equation be $\alpha .\alpha $
Hence we have
$\begin{align}
& \alpha +\alpha =\dfrac{2\left( mp+nq \right)}{{{m}^{2}}+{{n}^{2}}} \\
& \Rightarrow \alpha =\dfrac{mp+nq}{{{m}^{2}}+{{n}^{2}}}\text{ (i)} \\
\end{align}$
Also, we have
$\begin{align}
& \alpha \times \alpha =\dfrac{{{p}^{2}}+{{q}^{2}}}{{{m}^{2}}+{{n}^{2}}} \\
& \Rightarrow {{\alpha }^{2}}=\dfrac{{{p}^{2}}+{{q}^{2}}}{{{m}^{2}}+{{n}^{2}}}\text{ (ii)} \\
\end{align}$
Substituting the value of $\alpha $ from equation (ii) in equation (i), we get
${{\left( \dfrac{mp+nq}{{{m}^{2}}+{{n}^{2}}} \right)}^{2}}=\dfrac{{{p}^{2}}+{{q}^{2}}}{{{m}^{2}}+{{n}^{2}}}$
Multiplying both sides by ${{\left( {{m}^{2}}+{{n}^{2}} \right)}^{2}}$, we get
${{\left( mp+nq \right)}^{2}}=\left( {{p}^{2}}+{{q}^{2}} \right)\left( {{m}^{2}}+{{n}^{2}} \right)$
Using ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$, we get
${{\left( mp \right)}^{2}}+{{\left( nq \right)}^{2}}+2\left( mp \right)\left( nq \right)={{p}^{2}}{{m}^{2}}+{{p}^{2}}{{n}^{2}}+{{q}^{2}}{{m}^{2}}+{{q}^{2}}{{n}^{2}}$
Using ${{\left( ab \right)}^{n}}={{a}^{n}}{{b}^{n}}$, we get
${{m}^{2}}{{p}^{2}}+{{n}^{2}}{{q}^{2}}+2mnpq={{m}^{2}}{{p}^{2}}+{{n}^{2}}{{q}^{2}}+{{m}^{2}}{{q}^{2}}+{{n}^{2}}{{p}^{2}}$
Subtracting ${{m}^{2}}{{p}^{2}}+{{n}^{2}}{{q}^{2}}$ from both sides, we get
$2mnpq={{m}^{2}}{{q}^{2}}+{{n}^{2}}{{p}^{2}}$
Subtracting 2mnpq from both sides, we get
${{m}^{2}}{{q}^{2}}+{{n}^{2}}{{p}^{2}}-2mnpq=0$
Using ${{a}^{n}}{{b}^{n}}={{\left( ab \right)}^{n}}$, we get
${{\left( mq \right)}^{2}}+{{\left( np \right)}^{2}}-2\left( mq \right)\left( np \right)=0$
Using ${{a}^{2}}+{{b}^{2}}-2ab={{\left( a-b \right)}^{2}}$, we get
${{\left( mq-np \right)}^{2}}=0$
Using zero product property, we get
$mq=np$
Hence option [b] is correct.
Note: Alternative solution:
We know that the roots of the quadratic expression $a{{x}^{2}}+bx+c=0$ are equal when $D={{b}^{2}}-4ac=0$
Here $a={{m}^{2}}+{{n}^{2}},b=-2\left( mp+nq \right)$ and $c={{p}^{2}}+{{q}^{2}}$
Hence we have
$\begin{align}
& 4{{\left( mp+nq \right)}^{2}}-4\left( {{p}^{2}}+{{q}^{2}} \right)\left( {{m}^{2}}+{{n}^{2}} \right)=0 \\
& \Rightarrow {{\left( mp+nq \right)}^{2}}-\left( {{p}^{2}}+{{q}^{2}} \right)\left( {{m}^{2}}+{{n}^{2}} \right)=0 \\
\end{align}$
Let ${{z}_{1}}=p-iq$ and ${{z}_{2}}=m+in$
Now we have ${{z}_{1}}{{z}_{2}}=\left( mp+nq \right)+i\left( np-mq \right)$
Taking modulus on both sides, we get
$\begin{align}
& \left| {{z}_{1}}{{z}_{2}} \right|=\left| \left( mp+nq \right)+i\left( np-mq \right) \right| \\
& \Rightarrow \sqrt{\left( {{m}^{2}}+{{n}^{2}} \right)\left( {{p}^{2}}+{{q}^{2}} \right)}=\sqrt{{{\left( mp+nq \right)}^{2}}+{{\left( np-mq \right)}^{2}}} \\
& \Rightarrow \left( {{m}^{2}}+{{n}^{2}} \right)\left( {{p}^{2}}+{{q}^{2}} \right)={{\left( mp+nq \right)}^{2}}+{{\left( np-mq \right)}^{2}} \\
\end{align}$
Hence we have
$\begin{align}
& {{\left( mp+nq \right)}^{2}}-{{\left( mp+nq \right)}^{2}}-{{\left( np-mq \right)}^{2}}=0 \\
& \Rightarrow {{\left( np-mq \right)}^{2}}=0 \\
& \Rightarrow np=mq \\
\end{align}$
Hence option [b] is correct.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

