
If the equation $\left( 1+{{m}^{2}} \right){{x}^{2}}+2mcx+\left( {{c}^{2}}-{{a}^{2}} \right)=0$ has equal roots then
[a] \[{{a}^{2}}\left( 1+{{m}^{2}} \right)\]
[b] \[a\left( 1+{{m}^{2}} \right)\]
[c] \[{{a}^{4}}\left( 1-{{m}^{2}} \right)\]
[d] \[{{a}^{2}}\left( 1-{{m}^{2}} \right)\]
Answer
605.4k+ views
Hint: Assume ‘p’ to be the root of the quadratic expression. Use the formula for the sum of roots and product of roots of the quadratic to get two equations in p. Eliminate p between the equations to get the desired relation after simplification. Alternatively, you can use the property that if a quadratic expression has equal roots, then the discriminant D of the quadratic is 0.
Complete step-by-step answer:
Let p be the root of the quadratic equation $\left( 1+{{m}^{2}} \right){{x}^{2}}+2mcx+\left( {{c}^{2}}-{{a}^{2}} \right)=0$.
We know that if m and n are the roots of the quadratic equation $a{{x}^{2}}+bx+c=0$, then
$m+n=\dfrac{-b}{a}$ and $mn=\dfrac{c}{a}$
Here we have $a=\left( 1+{{m}^{2}} \right),b=2mc,c={{c}^{2}}-{{a}^{2}},m=p$ and n = p.
Hence we have
$\begin{align}
& p+p=\dfrac{-2mc}{1+{{m}^{2}}} \\
& \Rightarrow 2p=\dfrac{-2mc}{1+{{m}^{2}}} \\
& \Rightarrow p=\dfrac{-mc}{1+{{m}^{2}}}\text{ (i)} \\
\end{align}$
and
$\begin{align}
& p\times p=\dfrac{{{c}^{2}}-{{a}^{2}}}{1+{{m}^{2}}} \\
& \Rightarrow {{p}^{2}}=\dfrac{{{c}^{2}}-{{a}^{2}}}{1+{{m}^{2}}} \\
\end{align}$
Substituting the value of p from equation (i), we get
$\begin{align}
& {{\left( \dfrac{-mc}{1+{{m}^{2}}} \right)}^{2}}=\dfrac{{{c}^{2}}-{{a}^{2}}}{1+{{m}^{2}}} \\
& \Rightarrow \dfrac{{{m}^{2}}{{c}^{2}}}{{{\left( 1+{{m}^{2}} \right)}^{2}}}=\dfrac{{{c}^{2}}-{{a}^{2}}}{1+{{m}^{2}}} \\
\end{align}$
Cross multiplying, we get
\[\begin{align}
& {{m}^{2}}{{c}^{2}}\left( 1+{{m}^{2}} \right)=\left( {{c}^{2}}-{{a}^{2}} \right){{\left( 1+{{m}^{2}} \right)}^{2}} \\
& \Rightarrow {{m}^{2}}{{c}^{2}}=\left( {{c}^{2}}-{{a}^{2}} \right)\left( 1+{{m}^{2}} \right) \\
& \Rightarrow {{m}^{2}}{{c}^{2}}={{c}^{2}}+{{m}^{2}}{{c}^{2}}-{{a}^{2}}\left( 1+{{m}^{2}} \right) \\
& \Rightarrow {{c}^{2}}-{{a}^{2}}\left( 1+{{m}^{2}} \right)=0 \\
& \Rightarrow {{c}^{2}}={{a}^{2}}\left( 1+{{m}^{2}} \right) \\
\end{align}\]
Hence option [a] is correct.
Note: Alternatively, we know that the roots of the quadratic expression
$a{{x}^{2}}+bx+c=0$ are given by $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
So if roots are equal, we have
$\begin{align}
& \dfrac{-b+\sqrt{{{b}^{2}}-4ac}}{2a}=\dfrac{-b-\sqrt{{{b}^{2}}-4ac}}{2a} \\
& \Rightarrow \sqrt{{{b}^{2}}-4ac}=0 \\
& \Rightarrow {{b}^{2}}-4ac=0 \\
\end{align}$
Hence a quadratic expression has equal roots if and only if its discriminant = 0.
Hence we have $\left( 1+{{m}^{2}} \right){{x}^{2}}+2mcx+\left( {{c}^{2}}-{{a}^{2}} \right)=0$ if and only if
$\begin{align}
& {{\left( 2mc \right)}^{2}}-4\left( 1+{{m}^{2}} \right)\left( {{c}^{2}}-{{a}^{2}} \right)=0 \\
& \Rightarrow 4{{m}^{2}}{{c}^{2}}-4\left( 1+{{m}^{2}} \right)\left( {{c}^{2}}-{{a}^{2}} \right)=0 \\
& \Rightarrow {{m}^{2}}{{c}^{2}}=\left( {{c}^{2}}-{{a}^{2}} \right)\left( 1+{{m}^{2}} \right) \\
& \Rightarrow {{m}^{2}}{{c}^{2}}={{c}^{2}}+{{m}^{2}}{{c}^{2}}-{{a}^{2}}\left( 1+{{m}^{2}} \right) \\
& \Rightarrow {{c}^{2}}-{{a}^{2}}\left( 1+{{m}^{2}} \right)=0 \\
& \Rightarrow {{c}^{2}}={{a}^{2}}\left( 1+{{m}^{2}} \right) \\
\end{align}$
Which is the same as obtained above.
Hence option [a] is correct.
Complete step-by-step answer:
Let p be the root of the quadratic equation $\left( 1+{{m}^{2}} \right){{x}^{2}}+2mcx+\left( {{c}^{2}}-{{a}^{2}} \right)=0$.
We know that if m and n are the roots of the quadratic equation $a{{x}^{2}}+bx+c=0$, then
$m+n=\dfrac{-b}{a}$ and $mn=\dfrac{c}{a}$
Here we have $a=\left( 1+{{m}^{2}} \right),b=2mc,c={{c}^{2}}-{{a}^{2}},m=p$ and n = p.
Hence we have
$\begin{align}
& p+p=\dfrac{-2mc}{1+{{m}^{2}}} \\
& \Rightarrow 2p=\dfrac{-2mc}{1+{{m}^{2}}} \\
& \Rightarrow p=\dfrac{-mc}{1+{{m}^{2}}}\text{ (i)} \\
\end{align}$
and
$\begin{align}
& p\times p=\dfrac{{{c}^{2}}-{{a}^{2}}}{1+{{m}^{2}}} \\
& \Rightarrow {{p}^{2}}=\dfrac{{{c}^{2}}-{{a}^{2}}}{1+{{m}^{2}}} \\
\end{align}$
Substituting the value of p from equation (i), we get
$\begin{align}
& {{\left( \dfrac{-mc}{1+{{m}^{2}}} \right)}^{2}}=\dfrac{{{c}^{2}}-{{a}^{2}}}{1+{{m}^{2}}} \\
& \Rightarrow \dfrac{{{m}^{2}}{{c}^{2}}}{{{\left( 1+{{m}^{2}} \right)}^{2}}}=\dfrac{{{c}^{2}}-{{a}^{2}}}{1+{{m}^{2}}} \\
\end{align}$
Cross multiplying, we get
\[\begin{align}
& {{m}^{2}}{{c}^{2}}\left( 1+{{m}^{2}} \right)=\left( {{c}^{2}}-{{a}^{2}} \right){{\left( 1+{{m}^{2}} \right)}^{2}} \\
& \Rightarrow {{m}^{2}}{{c}^{2}}=\left( {{c}^{2}}-{{a}^{2}} \right)\left( 1+{{m}^{2}} \right) \\
& \Rightarrow {{m}^{2}}{{c}^{2}}={{c}^{2}}+{{m}^{2}}{{c}^{2}}-{{a}^{2}}\left( 1+{{m}^{2}} \right) \\
& \Rightarrow {{c}^{2}}-{{a}^{2}}\left( 1+{{m}^{2}} \right)=0 \\
& \Rightarrow {{c}^{2}}={{a}^{2}}\left( 1+{{m}^{2}} \right) \\
\end{align}\]
Hence option [a] is correct.
Note: Alternatively, we know that the roots of the quadratic expression
$a{{x}^{2}}+bx+c=0$ are given by $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
So if roots are equal, we have
$\begin{align}
& \dfrac{-b+\sqrt{{{b}^{2}}-4ac}}{2a}=\dfrac{-b-\sqrt{{{b}^{2}}-4ac}}{2a} \\
& \Rightarrow \sqrt{{{b}^{2}}-4ac}=0 \\
& \Rightarrow {{b}^{2}}-4ac=0 \\
\end{align}$
Hence a quadratic expression has equal roots if and only if its discriminant = 0.
Hence we have $\left( 1+{{m}^{2}} \right){{x}^{2}}+2mcx+\left( {{c}^{2}}-{{a}^{2}} \right)=0$ if and only if
$\begin{align}
& {{\left( 2mc \right)}^{2}}-4\left( 1+{{m}^{2}} \right)\left( {{c}^{2}}-{{a}^{2}} \right)=0 \\
& \Rightarrow 4{{m}^{2}}{{c}^{2}}-4\left( 1+{{m}^{2}} \right)\left( {{c}^{2}}-{{a}^{2}} \right)=0 \\
& \Rightarrow {{m}^{2}}{{c}^{2}}=\left( {{c}^{2}}-{{a}^{2}} \right)\left( 1+{{m}^{2}} \right) \\
& \Rightarrow {{m}^{2}}{{c}^{2}}={{c}^{2}}+{{m}^{2}}{{c}^{2}}-{{a}^{2}}\left( 1+{{m}^{2}} \right) \\
& \Rightarrow {{c}^{2}}-{{a}^{2}}\left( 1+{{m}^{2}} \right)=0 \\
& \Rightarrow {{c}^{2}}={{a}^{2}}\left( 1+{{m}^{2}} \right) \\
\end{align}$
Which is the same as obtained above.
Hence option [a] is correct.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

