# If the equation \[\left( 1+{{m}^{2}} \right){{x}^{2}}+2mcx+{{c}^{2}}-{{a}^{2}}=0\] has equal roots, then prove that \[{{c}^{2}}={{a}^{2}}\left( 1+{{m}^{2}} \right)\].

.

Last updated date: 27th Mar 2023

•

Total views: 306.9k

•

Views today: 2.83k

Answer

Verified

306.9k+ views

Hint: Find the discriminant of the given quadratic equation using the formula that discriminant of quadratic equation of the form \[a{{x}^{2}}+bx+c=0\] is \[{{b}^{2}}-4ac\] and equate it to zero to prove that given equation has equal roots.

Complete step-by-step answer:

We have the quadratic equation \[\left( 1+{{m}^{2}} \right){{x}^{2}}+2mcx+{{c}^{2}}-{{a}^{2}}=0\]. We have to prove that the given quadratic equation has equal roots.

We know that a quadratic equation of the form \[a{{x}^{2}}+bx+c=0\] has equal roots if the value of discriminant of the equation is equal to zero. We know that discriminant of the equation of the form \[a{{x}^{2}}+bx+c=0\] is \[{{b}^{2}}-4ac\].

So, we must have \[{{b}^{2}}-4ac=0\].

Substituting \[a=1+{{m}^{2}},b=2mc,c={{c}^{2}}-{{a}^{2}}\] in the above equation, we have the condition \[{{\left( 2mc \right)}^{2}}-4\left( 1+{{m}^{2}} \right)\left( {{c}^{2}}-{{a}^{2}} \right)=0\] for the equation \[\left( 1+{{m}^{2}} \right){{x}^{2}}+2mcx+{{c}^{2}}-{{a}^{2}}=0\] to have equal roots.

Simplifying the above expression, we have \[4{{m}^{2}}{{c}^{2}}-4{{c}^{2}}+4{{a}^{2}}-4{{m}^{2}}{{c}^{2}}+4{{m}^{2}}{{a}^{2}}=0\].

Further simplifying the equation, we get \[4\left( {{a}^{2}}+{{m}^{2}}{{a}^{2}}-{{c}^{2}} \right)=0\].

\[\begin{align}

& \Rightarrow {{a}^{2}}+{{m}^{2}}{{a}^{2}}-{{c}^{2}} \\

& \Rightarrow {{a}^{2}}+{{m}^{2}}{{a}^{2}}={{c}^{2}}={{a}^{2}}\left( 1+{{m}^{2}} \right) \\

\end{align}\]

Hence, we must have \[{{c}^{2}}={{a}^{2}}\left( 1+{{m}^{2}} \right)\] for the equation \[\left( 1+{{m}^{2}} \right){{x}^{2}}+2mcx+{{c}^{2}}-{{a}^{2}}=0\] to have equal roots.

Note: A quadratic equation is any polynomial equation in which the highest degree of the variable is two and which can be written in the form \[a{{x}^{2}}+bx+c=0\] where \[a\ne 0\]. The values of \[x\] that satisfy the given quadratic equation are called roots or solutions of the quadratic equation. Discriminant of a polynomial is a quantity that depends on the coefficients in the polynomial and helps to determine various properties of the roots. It is widely used in determining roots of the polynomial. For a quadratic equation, if the value of discriminant is positive, then the quadratic equation has unequal and real roots. If the discriminant is equal to zero, then the roots of the quadratic equation are equal. However, if the value of discriminant is negative, then the quadratic equation has imaginary (complex) roots.

Complete step-by-step answer:

We have the quadratic equation \[\left( 1+{{m}^{2}} \right){{x}^{2}}+2mcx+{{c}^{2}}-{{a}^{2}}=0\]. We have to prove that the given quadratic equation has equal roots.

We know that a quadratic equation of the form \[a{{x}^{2}}+bx+c=0\] has equal roots if the value of discriminant of the equation is equal to zero. We know that discriminant of the equation of the form \[a{{x}^{2}}+bx+c=0\] is \[{{b}^{2}}-4ac\].

So, we must have \[{{b}^{2}}-4ac=0\].

Substituting \[a=1+{{m}^{2}},b=2mc,c={{c}^{2}}-{{a}^{2}}\] in the above equation, we have the condition \[{{\left( 2mc \right)}^{2}}-4\left( 1+{{m}^{2}} \right)\left( {{c}^{2}}-{{a}^{2}} \right)=0\] for the equation \[\left( 1+{{m}^{2}} \right){{x}^{2}}+2mcx+{{c}^{2}}-{{a}^{2}}=0\] to have equal roots.

Simplifying the above expression, we have \[4{{m}^{2}}{{c}^{2}}-4{{c}^{2}}+4{{a}^{2}}-4{{m}^{2}}{{c}^{2}}+4{{m}^{2}}{{a}^{2}}=0\].

Further simplifying the equation, we get \[4\left( {{a}^{2}}+{{m}^{2}}{{a}^{2}}-{{c}^{2}} \right)=0\].

\[\begin{align}

& \Rightarrow {{a}^{2}}+{{m}^{2}}{{a}^{2}}-{{c}^{2}} \\

& \Rightarrow {{a}^{2}}+{{m}^{2}}{{a}^{2}}={{c}^{2}}={{a}^{2}}\left( 1+{{m}^{2}} \right) \\

\end{align}\]

Hence, we must have \[{{c}^{2}}={{a}^{2}}\left( 1+{{m}^{2}} \right)\] for the equation \[\left( 1+{{m}^{2}} \right){{x}^{2}}+2mcx+{{c}^{2}}-{{a}^{2}}=0\] to have equal roots.

Note: A quadratic equation is any polynomial equation in which the highest degree of the variable is two and which can be written in the form \[a{{x}^{2}}+bx+c=0\] where \[a\ne 0\]. The values of \[x\] that satisfy the given quadratic equation are called roots or solutions of the quadratic equation. Discriminant of a polynomial is a quantity that depends on the coefficients in the polynomial and helps to determine various properties of the roots. It is widely used in determining roots of the polynomial. For a quadratic equation, if the value of discriminant is positive, then the quadratic equation has unequal and real roots. If the discriminant is equal to zero, then the roots of the quadratic equation are equal. However, if the value of discriminant is negative, then the quadratic equation has imaginary (complex) roots.

Recently Updated Pages

If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE