Answer

Verified

483.6k+ views

Hint: Find the discriminant of the given quadratic equation using the formula that discriminant of quadratic equation of the form \[a{{x}^{2}}+bx+c=0\] is \[{{b}^{2}}-4ac\] and equate it to zero to prove that given equation has equal roots.

Complete step-by-step answer:

We have the quadratic equation \[\left( 1+{{m}^{2}} \right){{x}^{2}}+2mcx+{{c}^{2}}-{{a}^{2}}=0\]. We have to prove that the given quadratic equation has equal roots.

We know that a quadratic equation of the form \[a{{x}^{2}}+bx+c=0\] has equal roots if the value of discriminant of the equation is equal to zero. We know that discriminant of the equation of the form \[a{{x}^{2}}+bx+c=0\] is \[{{b}^{2}}-4ac\].

So, we must have \[{{b}^{2}}-4ac=0\].

Substituting \[a=1+{{m}^{2}},b=2mc,c={{c}^{2}}-{{a}^{2}}\] in the above equation, we have the condition \[{{\left( 2mc \right)}^{2}}-4\left( 1+{{m}^{2}} \right)\left( {{c}^{2}}-{{a}^{2}} \right)=0\] for the equation \[\left( 1+{{m}^{2}} \right){{x}^{2}}+2mcx+{{c}^{2}}-{{a}^{2}}=0\] to have equal roots.

Simplifying the above expression, we have \[4{{m}^{2}}{{c}^{2}}-4{{c}^{2}}+4{{a}^{2}}-4{{m}^{2}}{{c}^{2}}+4{{m}^{2}}{{a}^{2}}=0\].

Further simplifying the equation, we get \[4\left( {{a}^{2}}+{{m}^{2}}{{a}^{2}}-{{c}^{2}} \right)=0\].

\[\begin{align}

& \Rightarrow {{a}^{2}}+{{m}^{2}}{{a}^{2}}-{{c}^{2}} \\

& \Rightarrow {{a}^{2}}+{{m}^{2}}{{a}^{2}}={{c}^{2}}={{a}^{2}}\left( 1+{{m}^{2}} \right) \\

\end{align}\]

Hence, we must have \[{{c}^{2}}={{a}^{2}}\left( 1+{{m}^{2}} \right)\] for the equation \[\left( 1+{{m}^{2}} \right){{x}^{2}}+2mcx+{{c}^{2}}-{{a}^{2}}=0\] to have equal roots.

Note: A quadratic equation is any polynomial equation in which the highest degree of the variable is two and which can be written in the form \[a{{x}^{2}}+bx+c=0\] where \[a\ne 0\]. The values of \[x\] that satisfy the given quadratic equation are called roots or solutions of the quadratic equation. Discriminant of a polynomial is a quantity that depends on the coefficients in the polynomial and helps to determine various properties of the roots. It is widely used in determining roots of the polynomial. For a quadratic equation, if the value of discriminant is positive, then the quadratic equation has unequal and real roots. If the discriminant is equal to zero, then the roots of the quadratic equation are equal. However, if the value of discriminant is negative, then the quadratic equation has imaginary (complex) roots.

Complete step-by-step answer:

We have the quadratic equation \[\left( 1+{{m}^{2}} \right){{x}^{2}}+2mcx+{{c}^{2}}-{{a}^{2}}=0\]. We have to prove that the given quadratic equation has equal roots.

We know that a quadratic equation of the form \[a{{x}^{2}}+bx+c=0\] has equal roots if the value of discriminant of the equation is equal to zero. We know that discriminant of the equation of the form \[a{{x}^{2}}+bx+c=0\] is \[{{b}^{2}}-4ac\].

So, we must have \[{{b}^{2}}-4ac=0\].

Substituting \[a=1+{{m}^{2}},b=2mc,c={{c}^{2}}-{{a}^{2}}\] in the above equation, we have the condition \[{{\left( 2mc \right)}^{2}}-4\left( 1+{{m}^{2}} \right)\left( {{c}^{2}}-{{a}^{2}} \right)=0\] for the equation \[\left( 1+{{m}^{2}} \right){{x}^{2}}+2mcx+{{c}^{2}}-{{a}^{2}}=0\] to have equal roots.

Simplifying the above expression, we have \[4{{m}^{2}}{{c}^{2}}-4{{c}^{2}}+4{{a}^{2}}-4{{m}^{2}}{{c}^{2}}+4{{m}^{2}}{{a}^{2}}=0\].

Further simplifying the equation, we get \[4\left( {{a}^{2}}+{{m}^{2}}{{a}^{2}}-{{c}^{2}} \right)=0\].

\[\begin{align}

& \Rightarrow {{a}^{2}}+{{m}^{2}}{{a}^{2}}-{{c}^{2}} \\

& \Rightarrow {{a}^{2}}+{{m}^{2}}{{a}^{2}}={{c}^{2}}={{a}^{2}}\left( 1+{{m}^{2}} \right) \\

\end{align}\]

Hence, we must have \[{{c}^{2}}={{a}^{2}}\left( 1+{{m}^{2}} \right)\] for the equation \[\left( 1+{{m}^{2}} \right){{x}^{2}}+2mcx+{{c}^{2}}-{{a}^{2}}=0\] to have equal roots.

Note: A quadratic equation is any polynomial equation in which the highest degree of the variable is two and which can be written in the form \[a{{x}^{2}}+bx+c=0\] where \[a\ne 0\]. The values of \[x\] that satisfy the given quadratic equation are called roots or solutions of the quadratic equation. Discriminant of a polynomial is a quantity that depends on the coefficients in the polynomial and helps to determine various properties of the roots. It is widely used in determining roots of the polynomial. For a quadratic equation, if the value of discriminant is positive, then the quadratic equation has unequal and real roots. If the discriminant is equal to zero, then the roots of the quadratic equation are equal. However, if the value of discriminant is negative, then the quadratic equation has imaginary (complex) roots.

Recently Updated Pages

what is the correct chronological order of the following class 10 social science CBSE

Which of the following was not the actual cause for class 10 social science CBSE

Which of the following statements is not correct A class 10 social science CBSE

Which of the following leaders was not present in the class 10 social science CBSE

Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE

Which one of the following places is not covered by class 10 social science CBSE

Trending doubts

A rainbow has circular shape because A The earth is class 11 physics CBSE

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

How do you graph the function fx 4x class 9 maths CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Why is there a time difference of about 5 hours between class 10 social science CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell