
If the \[{{\text{E}}^{\text{0}}}_{{\text{cell}}}\] for a given reaction has a negative value, then which of the following gives the correct relationships for the values of \[{\text{$\Delta$ }}{{\text{G}}^{\text{0}}}\]and \[{{\text{K}}_{{\text{eq}}}}\]?
A) \[{\text{$\Delta$ }}{{\text{G}}^{\text{0}}} < 0;{{\text{K}}_{{\text{eq}}}} > 1\]
B) \[{\text{$\Delta$ }}{{\text{G}}^{\text{0}}} < 0;{{\text{K}}_{{\text{eq}}}} < 1\]
C) \[{\text{$\Delta$ }}{{\text{G}}^{\text{0}}} > 0;{{\text{K}}_{{\text{eq}}}} < 1\]
D) \[{\text{$\Delta$ }}{{\text{G}}^{\text{0}}} > 0;{{\text{K}}_{{\text{eq}}}} > 1\]
Answer
564.6k+ views
Hint: Using the equation related to \[{{\text{E}}^{\text{0}}}_{{\text{cell}}}\] and \[{\text{$\Delta$ }}{{\text{G}}^{\text{0}}}\] determine the sign of \[{\text{$\Delta$ }}{{\text{G}}^{\text{0}}}\] value for a negative value of \[{{\text{E}}^{\text{0}}}_{{\text{cell}}}\] . The negative sign of \[{\text{$\Delta$ }}{{\text{G}}^{\text{0}}}\] indicates it is less than 0 while the positive sign indicates it is greater than 0.
Similarly using the relation between \[{{\text{E}}^{\text{0}}}_{{\text{cell}}}\] and \[{{\text{K}}_{{\text{eq}}}}\] determine the sign of \[{\text{ln}}{{\text{K}}_{{\text{eq}}}}\]value. Using the sign \[{\text{ln}}{{\text{K}}_{{\text{eq}}}}\] value predicts the value of \[{{\text{K}}_{{\text{eq}}}}\]. Negative value of \[{\text{ln}}{{\text{K}}_{{\text{eq}}}}\]indicates \[{{\text{K}}_{{\text{eq}}}} < 1\]while the positive value of \[{\text{ln}}{{\text{K}}_{{\text{eq}}}}\] indicates \[{{\text{K}}_{{\text{eq}}}} > 1\]
Formula Used: \[{\text{$\Delta$ }}{{\text{G}}^{\text{0}}}{\text{ = - nF}}{{\text{E}}^{\text{0}}}_{{\text{cell}}}\]
\[{\text{$\Delta$ }}{{\text{G}}^{\text{0}}}{\text{ = - RTln}}{{\text{K}}_{{\text{eq}}}}\]
Complete step by step answer:
The standard electrode potential of a metal may be defined as the potential difference in volts developed in a cell consisting of two electrodes, the pure metal in contact with a molar solution of one of its own ions and the normal hydrogen electrode.
The equation related to standard electrode potential and Gibbs free energy is as follows:
\[{\text{$\Delta$ }}{{\text{G}}^{\text{0}}}{\text{ = - nF}}{{\text{E}}^{\text{0}}}_{{\text{cell}}}\]
Here,
\[{\text{$\Delta$ }}{{\text{G}}^{\text{0}}}\] = Gibbs free energy
n= number of electrons transfer
F = Faraday constant
\[{{\text{E}}^{\text{0}}}_{{\text{cell}}}\] = standard electrode potential
So, if the \[{{\text{E}}^{\text{0}}}_{{\text{cell}}}\] for a given reaction has a negative value then the value of \[{\text{$\Delta$ }}{{\text{G}}^{\text{0}}}\] would be positive.
The positive value of \[{\text{$\Delta$ }}{{\text{G}}^{\text{0}}}\] indicates that it is greater than 0.
So, for the given reaction \[{\text{$\Delta$ }}{{\text{G}}^{\text{0}}} > 0\].
Now, using the relation between \[{{\text{E}}^{\text{0}}}_{{\text{cell}}}\] and \[{{\text{K}}_{{\text{eq}}}}\] we can determine the sign of \[{{\text{K}}_{{\text{eq}}}}\] as follows:
We know,
\[{\text{$\Delta$ }}{{\text{G}}^{\text{0}}}{\text{ = - nF}}{{\text{E}}^{\text{0}}}_{{\text{cell}}}\]
And
\[{\text{$\Delta$ }}{{\text{G}}^{\text{0}}}{\text{ = - RTln}}{{\text{K}}_{{\text{eq}}}}\]
So,
\[{\text{ - nF}}{{\text{E}}^{\text{0}}}_{{\text{cell}}}{\text{ = - RTln}}{{\text{K}}_{{\text{eq}}}}\]
So, if the \[{{\text{E}}^{\text{0}}}_{{\text{cell}}}\] for a given reaction has a negative value then the value of \[{\text{ln}}{{\text{K}}_{{\text{eq}}}}\] would be negative.
A negative value of \[{\text{ln}}{{\text{K}}_{{\text{eq}}}}\] indicates \[{{\text{K}}_{{\text{eq}}}} < 1\].
Thus, if the \[{{\text{E}}^{\text{0}}}_{{\text{cell}}}\] for a given reaction has a negative value then \[{\text{$\Delta$ }}{{\text{G}}^{\text{0}}} > 0\] and \[{{\text{K}}_{{\text{eq}}}} < 1\].
Hence, the correct option is (C) \[{\text{$\Delta$ }}{{\text{G}}^{\text{0}}} > 0;{{\text{K}}_{{\text{eq}}}} < 1\]
Note: The sign of Gibbs free energy indicates the spontaneity of the reaction. The signs of \[{{\text{E}}^{\text{0}}}_{{\text{cell}}}\] and \[{\text{$\Delta$ }}{{\text{G}}^{\text{0}}}\] are always opposite to each other. The value of \[{{\text{K}}_{{\text{eq}}}} < 1\] when \[{{\text{E}}^{\text{0}}}_{{\text{cell}}}\] is negative and \[{{\text{K}}_{{\text{eq}}}} > 1\] when \[{{\text{E}}^{\text{0}}}_{{\text{cell}}}\] is positive.
Similarly using the relation between \[{{\text{E}}^{\text{0}}}_{{\text{cell}}}\] and \[{{\text{K}}_{{\text{eq}}}}\] determine the sign of \[{\text{ln}}{{\text{K}}_{{\text{eq}}}}\]value. Using the sign \[{\text{ln}}{{\text{K}}_{{\text{eq}}}}\] value predicts the value of \[{{\text{K}}_{{\text{eq}}}}\]. Negative value of \[{\text{ln}}{{\text{K}}_{{\text{eq}}}}\]indicates \[{{\text{K}}_{{\text{eq}}}} < 1\]while the positive value of \[{\text{ln}}{{\text{K}}_{{\text{eq}}}}\] indicates \[{{\text{K}}_{{\text{eq}}}} > 1\]
Formula Used: \[{\text{$\Delta$ }}{{\text{G}}^{\text{0}}}{\text{ = - nF}}{{\text{E}}^{\text{0}}}_{{\text{cell}}}\]
\[{\text{$\Delta$ }}{{\text{G}}^{\text{0}}}{\text{ = - RTln}}{{\text{K}}_{{\text{eq}}}}\]
Complete step by step answer:
The standard electrode potential of a metal may be defined as the potential difference in volts developed in a cell consisting of two electrodes, the pure metal in contact with a molar solution of one of its own ions and the normal hydrogen electrode.
The equation related to standard electrode potential and Gibbs free energy is as follows:
\[{\text{$\Delta$ }}{{\text{G}}^{\text{0}}}{\text{ = - nF}}{{\text{E}}^{\text{0}}}_{{\text{cell}}}\]
Here,
\[{\text{$\Delta$ }}{{\text{G}}^{\text{0}}}\] = Gibbs free energy
n= number of electrons transfer
F = Faraday constant
\[{{\text{E}}^{\text{0}}}_{{\text{cell}}}\] = standard electrode potential
So, if the \[{{\text{E}}^{\text{0}}}_{{\text{cell}}}\] for a given reaction has a negative value then the value of \[{\text{$\Delta$ }}{{\text{G}}^{\text{0}}}\] would be positive.
The positive value of \[{\text{$\Delta$ }}{{\text{G}}^{\text{0}}}\] indicates that it is greater than 0.
So, for the given reaction \[{\text{$\Delta$ }}{{\text{G}}^{\text{0}}} > 0\].
Now, using the relation between \[{{\text{E}}^{\text{0}}}_{{\text{cell}}}\] and \[{{\text{K}}_{{\text{eq}}}}\] we can determine the sign of \[{{\text{K}}_{{\text{eq}}}}\] as follows:
We know,
\[{\text{$\Delta$ }}{{\text{G}}^{\text{0}}}{\text{ = - nF}}{{\text{E}}^{\text{0}}}_{{\text{cell}}}\]
And
\[{\text{$\Delta$ }}{{\text{G}}^{\text{0}}}{\text{ = - RTln}}{{\text{K}}_{{\text{eq}}}}\]
So,
\[{\text{ - nF}}{{\text{E}}^{\text{0}}}_{{\text{cell}}}{\text{ = - RTln}}{{\text{K}}_{{\text{eq}}}}\]
So, if the \[{{\text{E}}^{\text{0}}}_{{\text{cell}}}\] for a given reaction has a negative value then the value of \[{\text{ln}}{{\text{K}}_{{\text{eq}}}}\] would be negative.
A negative value of \[{\text{ln}}{{\text{K}}_{{\text{eq}}}}\] indicates \[{{\text{K}}_{{\text{eq}}}} < 1\].
Thus, if the \[{{\text{E}}^{\text{0}}}_{{\text{cell}}}\] for a given reaction has a negative value then \[{\text{$\Delta$ }}{{\text{G}}^{\text{0}}} > 0\] and \[{{\text{K}}_{{\text{eq}}}} < 1\].
Hence, the correct option is (C) \[{\text{$\Delta$ }}{{\text{G}}^{\text{0}}} > 0;{{\text{K}}_{{\text{eq}}}} < 1\]
Note: The sign of Gibbs free energy indicates the spontaneity of the reaction. The signs of \[{{\text{E}}^{\text{0}}}_{{\text{cell}}}\] and \[{\text{$\Delta$ }}{{\text{G}}^{\text{0}}}\] are always opposite to each other. The value of \[{{\text{K}}_{{\text{eq}}}} < 1\] when \[{{\text{E}}^{\text{0}}}_{{\text{cell}}}\] is negative and \[{{\text{K}}_{{\text{eq}}}} > 1\] when \[{{\text{E}}^{\text{0}}}_{{\text{cell}}}\] is positive.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

