
If the direction ratios of two lines are given by \[l+2m+3n=0\] and \[3lm+mn-4nl=0\], then angle between the lines is: -
(a) \[\dfrac{\pi }{2}\]
(b) \[\dfrac{\pi }{3}\]
(c) \[\dfrac{\pi }{4}\]
(d) \[\dfrac{\pi }{6}\]
Answer
580.2k+ views
Hint: Assume the equations, \[l+2m+3n=0\] and \[3lm+mn-4nl=0\] as equation (i) and (ii) respectively. Substitute the value of l, found in terms of m and n, from equation (i) in equation (ii). Solve the quadratic equation containing m and n. Find the value of m in terms of n and substitute each value of m to get a corresponding value of l. Use the relation: - \[\cos \theta =\dfrac{{{l}_{1}}{{l}_{2}}+{{m}_{1}}{{m}_{2}}+{{n}_{1}}{{n}_{2}}}{\sqrt{l_{1}^{2}+m_{1}^{2}+n_{1}^{2}}.\sqrt{l_{2}^{2}+m_{2}^{2}+n_{2}^{2}}}\] to find the value of \[\theta \].
Complete step by step answer:
We have been given two lines: -
\[\Rightarrow l+2m+3n=0\] - (i)
\[\Rightarrow 3lm+mn-4nl=0\] - (ii)
Substituting the value of l from equation (i) in (ii), we get,
\[\begin{align}
& \Rightarrow 3m\left( -2m-3n \right)+mn-4n\left( -2m-3n \right)=0 \\
& \Rightarrow -6{{m}^{2}}-9mn+mn+8mn+12{{n}^{2}}=0 \\
& \Rightarrow 6{{m}^{2}}=12{{n}^{2}} \\
& \Rightarrow {{m}^{2}}=2{{n}^{2}} \\
\end{align}\]
Taking square root both sides, we get,
\[\Rightarrow m=\pm \sqrt{2}n\]
Case (i): - When \[m=\sqrt{2}n\],
\[\begin{align}
& \Rightarrow l=-\left( 2m+3n \right) \\
& \Rightarrow l=-\left( 2\sqrt{2}n+3n \right) \\
& \Rightarrow l=-\left( 2\sqrt{2}+3 \right)n \\
\end{align}\]
Case (ii): - When \[m=-\sqrt{2}n\],
\[\begin{align}
& \Rightarrow l=-\left( 2m+3n \right) \\
& \Rightarrow l=-\left( -2\sqrt{2}n+3n \right) \\
& \Rightarrow l=-\left( -2\sqrt{2}+3 \right)n \\
\end{align}\]
Therefore, the two set of values of l, m and n can be represented as: - \[\left( {{l}_{1}},{{m}_{1}},{{n}_{1}} \right)\] and \[\left( {{l}_{2}},{{m}_{2}},{{n}_{2}} \right)\].
Here, \[\left( {{l}_{1}},{{m}_{1}},{{n}_{1}} \right)=\left( -\left( 2\sqrt{2}+3 \right),\sqrt{2},1 \right)\]
And, \[\left( {{l}_{2}},{{m}_{2}},{{n}_{2}} \right)=\left( -\left( -2\sqrt{2}+3 \right),-\sqrt{2},1 \right)\]
Now, the angle between two lines are given as: -
\[\Rightarrow \cos \theta =\dfrac{{{l}_{1}}{{l}_{2}}+{{m}_{1}}{{m}_{2}}+{{n}_{1}}{{n}_{2}}}{\sqrt{l_{1}^{2}+m_{1}^{2}+n_{1}^{2}}.\sqrt{l_{2}^{2}+m_{2}^{2}+n_{2}^{2}}}\]
Substituting all the values, we get,
\[\begin{align}
& \Rightarrow \cos \theta =\dfrac{\left[ -\left( 2\sqrt{2}+3 \right) \right]\times \left[ -\left( -2\sqrt{2}+3 \right) \right]+\sqrt{2}\times \left( -\sqrt{2} \right)+1\times 1}{\sqrt{{{\left[ -\left( 2\sqrt{2}+3 \right) \right]}^{2}}+{{\left( \sqrt{2} \right)}^{2}}+{{1}^{2}}}.\sqrt{{{\left[ -\left( -2\sqrt{2}+3 \right) \right]}^{2}}+{{\left( -\sqrt{2} \right)}^{2}}+{{1}^{2}}}} \\
& \Rightarrow \cos \theta =\dfrac{\left( 3+2\sqrt{2} \right)\times \left( 3-2\sqrt{2} \right)-2+1}{\sqrt{{{\left( 3+2\sqrt{2} \right)}^{2}}+2+1}.\sqrt{{{\left( 3-2\sqrt{2} \right)}^{2}}+2+1}} \\
& \\
& \Rightarrow \cos \theta =\dfrac{9-8-2+1}{\sqrt{{{\left( 3+2\sqrt{2} \right)}^{2}}+3}.\sqrt{{{\left( 3-2\sqrt{2} \right)}^{2}}+3}} \\
\end{align}\]
\[\Rightarrow \cos \theta =0\], since the numerator will become 0.
We know that, \[\cos {{90}^{\circ }}=\dfrac{\pi }{2}=0\].
\[\Rightarrow \theta =\dfrac{\pi }{2}\]
So, the correct answer is “Option A”.
Note: One may note that after solving the quadratic equation we have considered both the values of m and no values are neglected. This is because we have to find two values of each m, n and l so that we can apply the formula to find the angle. We need not to find exact values of l, m and n because they are ratios and will get cancelled when we are finding angles.
Complete step by step answer:
We have been given two lines: -
\[\Rightarrow l+2m+3n=0\] - (i)
\[\Rightarrow 3lm+mn-4nl=0\] - (ii)
Substituting the value of l from equation (i) in (ii), we get,
\[\begin{align}
& \Rightarrow 3m\left( -2m-3n \right)+mn-4n\left( -2m-3n \right)=0 \\
& \Rightarrow -6{{m}^{2}}-9mn+mn+8mn+12{{n}^{2}}=0 \\
& \Rightarrow 6{{m}^{2}}=12{{n}^{2}} \\
& \Rightarrow {{m}^{2}}=2{{n}^{2}} \\
\end{align}\]
Taking square root both sides, we get,
\[\Rightarrow m=\pm \sqrt{2}n\]
Case (i): - When \[m=\sqrt{2}n\],
\[\begin{align}
& \Rightarrow l=-\left( 2m+3n \right) \\
& \Rightarrow l=-\left( 2\sqrt{2}n+3n \right) \\
& \Rightarrow l=-\left( 2\sqrt{2}+3 \right)n \\
\end{align}\]
Case (ii): - When \[m=-\sqrt{2}n\],
\[\begin{align}
& \Rightarrow l=-\left( 2m+3n \right) \\
& \Rightarrow l=-\left( -2\sqrt{2}n+3n \right) \\
& \Rightarrow l=-\left( -2\sqrt{2}+3 \right)n \\
\end{align}\]
Therefore, the two set of values of l, m and n can be represented as: - \[\left( {{l}_{1}},{{m}_{1}},{{n}_{1}} \right)\] and \[\left( {{l}_{2}},{{m}_{2}},{{n}_{2}} \right)\].
Here, \[\left( {{l}_{1}},{{m}_{1}},{{n}_{1}} \right)=\left( -\left( 2\sqrt{2}+3 \right),\sqrt{2},1 \right)\]
And, \[\left( {{l}_{2}},{{m}_{2}},{{n}_{2}} \right)=\left( -\left( -2\sqrt{2}+3 \right),-\sqrt{2},1 \right)\]
Now, the angle between two lines are given as: -
\[\Rightarrow \cos \theta =\dfrac{{{l}_{1}}{{l}_{2}}+{{m}_{1}}{{m}_{2}}+{{n}_{1}}{{n}_{2}}}{\sqrt{l_{1}^{2}+m_{1}^{2}+n_{1}^{2}}.\sqrt{l_{2}^{2}+m_{2}^{2}+n_{2}^{2}}}\]
Substituting all the values, we get,
\[\begin{align}
& \Rightarrow \cos \theta =\dfrac{\left[ -\left( 2\sqrt{2}+3 \right) \right]\times \left[ -\left( -2\sqrt{2}+3 \right) \right]+\sqrt{2}\times \left( -\sqrt{2} \right)+1\times 1}{\sqrt{{{\left[ -\left( 2\sqrt{2}+3 \right) \right]}^{2}}+{{\left( \sqrt{2} \right)}^{2}}+{{1}^{2}}}.\sqrt{{{\left[ -\left( -2\sqrt{2}+3 \right) \right]}^{2}}+{{\left( -\sqrt{2} \right)}^{2}}+{{1}^{2}}}} \\
& \Rightarrow \cos \theta =\dfrac{\left( 3+2\sqrt{2} \right)\times \left( 3-2\sqrt{2} \right)-2+1}{\sqrt{{{\left( 3+2\sqrt{2} \right)}^{2}}+2+1}.\sqrt{{{\left( 3-2\sqrt{2} \right)}^{2}}+2+1}} \\
& \\
& \Rightarrow \cos \theta =\dfrac{9-8-2+1}{\sqrt{{{\left( 3+2\sqrt{2} \right)}^{2}}+3}.\sqrt{{{\left( 3-2\sqrt{2} \right)}^{2}}+3}} \\
\end{align}\]
\[\Rightarrow \cos \theta =0\], since the numerator will become 0.
We know that, \[\cos {{90}^{\circ }}=\dfrac{\pi }{2}=0\].
\[\Rightarrow \theta =\dfrac{\pi }{2}\]
So, the correct answer is “Option A”.
Note: One may note that after solving the quadratic equation we have considered both the values of m and no values are neglected. This is because we have to find two values of each m, n and l so that we can apply the formula to find the angle. We need not to find exact values of l, m and n because they are ratios and will get cancelled when we are finding angles.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

