
If the coordinates of the one end of the diameter of a circle are (2,3) and the coordinates of its centre are (-2,5), then the coordinates of the other end of the diameter are:
(a) (-6,7)
(b) (6,-7)
(c) (6,7)
(d) (-6,-7)
Answer
573.3k+ views
Hint: We will use the section formula, $\left( a,b \right)=\left( \dfrac{{{m}_{1}}{{x}_{2}}+{{m}_{2}}{{x}_{1}}}{{{m}_{1}}+{{m}_{2}}},\dfrac{{{m}_{1}}{{y}_{2}}+{{m}_{2}}{{y}_{1}}}{{{m}_{1}}+{{m}_{2}}} \right)$ where a point $\left( a,b \right)$ divides a line with end coordinates $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ in the ratio ${{m}_{1}}:{{m}_{2}}$ , to find the other end coordinate of the diameter. We will use the fact that the centre of the circle is also the midpoint of the diameter of a circle.
Complete step by step answer:
We know if a point $\left( a,b \right)$ divides a line with end coordinates $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ in the ratio ${{m}_{1}}:{{m}_{2}}$, then
$\left( a,b \right)=\left( \dfrac{{{m}_{1}}{{x}_{2}}+{{m}_{2}}{{x}_{1}}}{{{m}_{1}}+{{m}_{2}}},\dfrac{{{m}_{1}}{{y}_{2}}+{{m}_{2}}{{y}_{1}}}{{{m}_{1}}+{{m}_{2}}} \right)\text{ }\ldots \left( i \right)$
We also know that the centre of a circle is its midpoint. And we know diameter is a line in a circle which passes through the centre. This implies that the centre of a circle divides the diameter in two equal parts. This means that the centre of a circle divides the diameter of a circle in an equal ratio, that is, 1:1.
Thus, here,
$\begin{align}
& \left( 2,3 \right)=\left( {{x}_{1}},{{y}_{1}} \right) \\
& \left( -2,5 \right)=\left( a,b \right) \\
& \left( x,y \right)=\left( {{x}_{2}},{{y}_{2}} \right) \\
& 1:1={{m}_{1}}:{{m}_{2}} \\
\end{align}$
Putting these values in equation (i), we get
$\begin{align}
& \text{ }\left( -2,5 \right)=\left( \dfrac{1\cdot x+1\cdot 2}{1+1},\dfrac{1\cdot y+1\cdot 3}{1+1} \right) \\
& \Rightarrow \left( -2,5 \right)=\left( \dfrac{x+2}{2},\dfrac{y+3}{2} \right) \\
\end{align}$
Opening the brackets, we get
$\begin{align}
& \text{ }\dfrac{x+2}{2}=-2 \\
& \Rightarrow x+2=-4 \\
& \Rightarrow x=-4-2=-6 \\
\end{align}$
And,
$\begin{align}
& \text{ }\dfrac{y+3}{2}=5 \\
& \Rightarrow y+3=10 \\
& \Rightarrow y=10-3=7 \\
\end{align}$
Thus, the coordinates are $\left( x,y \right)=\left( -6,7 \right)$
So, the correct answer is “Option A”.
Note: We should keep a cool mind while doing calculations to make it error free. We can use the formula $\left( a,b \right)=\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)$ directly when (a,b) is the midpoint of a line with end coordinates $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$.
For example, in this question,
$\begin{align}
& \left( {{x}_{1}},{{y}_{1}} \right)=\left( 2,3 \right) \\
& \left( a,b \right)=\left( -2,5 \right) \\
& \left( {{x}_{2}},{{y}_{2}} \right)=\left( x,y \right) \\
\end{align}$
Applying the formula, we get
$\left( -2,5 \right)=\left( \dfrac{x+2}{2},\dfrac{y+3}{2} \right)$
Solving this, we get
$\begin{align}
& \text{ }\dfrac{x+2}{2}=-2 \\
& \Rightarrow x+2=-4 \\
& \Rightarrow x=-4-2=-6 \\
\end{align}$
And, for y coordinate,
$\begin{align}
& \text{ }\dfrac{y+3}{2}=5 \\
& \Rightarrow y+3=10 \\
& \Rightarrow y=10-3=7 \\
\end{align}$
Thus, the coordinates are $\left( x,y \right)=\left( -6,7 \right)$
Clearly, this formula is more time-efficient.
Complete step by step answer:
We know if a point $\left( a,b \right)$ divides a line with end coordinates $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ in the ratio ${{m}_{1}}:{{m}_{2}}$, then
$\left( a,b \right)=\left( \dfrac{{{m}_{1}}{{x}_{2}}+{{m}_{2}}{{x}_{1}}}{{{m}_{1}}+{{m}_{2}}},\dfrac{{{m}_{1}}{{y}_{2}}+{{m}_{2}}{{y}_{1}}}{{{m}_{1}}+{{m}_{2}}} \right)\text{ }\ldots \left( i \right)$
We also know that the centre of a circle is its midpoint. And we know diameter is a line in a circle which passes through the centre. This implies that the centre of a circle divides the diameter in two equal parts. This means that the centre of a circle divides the diameter of a circle in an equal ratio, that is, 1:1.
Thus, here,
$\begin{align}
& \left( 2,3 \right)=\left( {{x}_{1}},{{y}_{1}} \right) \\
& \left( -2,5 \right)=\left( a,b \right) \\
& \left( x,y \right)=\left( {{x}_{2}},{{y}_{2}} \right) \\
& 1:1={{m}_{1}}:{{m}_{2}} \\
\end{align}$
Putting these values in equation (i), we get
$\begin{align}
& \text{ }\left( -2,5 \right)=\left( \dfrac{1\cdot x+1\cdot 2}{1+1},\dfrac{1\cdot y+1\cdot 3}{1+1} \right) \\
& \Rightarrow \left( -2,5 \right)=\left( \dfrac{x+2}{2},\dfrac{y+3}{2} \right) \\
\end{align}$
Opening the brackets, we get
$\begin{align}
& \text{ }\dfrac{x+2}{2}=-2 \\
& \Rightarrow x+2=-4 \\
& \Rightarrow x=-4-2=-6 \\
\end{align}$
And,
$\begin{align}
& \text{ }\dfrac{y+3}{2}=5 \\
& \Rightarrow y+3=10 \\
& \Rightarrow y=10-3=7 \\
\end{align}$
Thus, the coordinates are $\left( x,y \right)=\left( -6,7 \right)$
So, the correct answer is “Option A”.
Note: We should keep a cool mind while doing calculations to make it error free. We can use the formula $\left( a,b \right)=\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)$ directly when (a,b) is the midpoint of a line with end coordinates $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$.
For example, in this question,
$\begin{align}
& \left( {{x}_{1}},{{y}_{1}} \right)=\left( 2,3 \right) \\
& \left( a,b \right)=\left( -2,5 \right) \\
& \left( {{x}_{2}},{{y}_{2}} \right)=\left( x,y \right) \\
\end{align}$
Applying the formula, we get
$\left( -2,5 \right)=\left( \dfrac{x+2}{2},\dfrac{y+3}{2} \right)$
Solving this, we get
$\begin{align}
& \text{ }\dfrac{x+2}{2}=-2 \\
& \Rightarrow x+2=-4 \\
& \Rightarrow x=-4-2=-6 \\
\end{align}$
And, for y coordinate,
$\begin{align}
& \text{ }\dfrac{y+3}{2}=5 \\
& \Rightarrow y+3=10 \\
& \Rightarrow y=10-3=7 \\
\end{align}$
Thus, the coordinates are $\left( x,y \right)=\left( -6,7 \right)$
Clearly, this formula is more time-efficient.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

