
If the coordinates of the one end of the diameter of a circle are (2,3) and the coordinates of its centre are (-2,5), then the coordinates of the other end of the diameter are:
(a) (-6,7)
(b) (6,-7)
(c) (6,7)
(d) (-6,-7)
Answer
508.8k+ views
Hint: We will use the section formula, $\left( a,b \right)=\left( \dfrac{{{m}_{1}}{{x}_{2}}+{{m}_{2}}{{x}_{1}}}{{{m}_{1}}+{{m}_{2}}},\dfrac{{{m}_{1}}{{y}_{2}}+{{m}_{2}}{{y}_{1}}}{{{m}_{1}}+{{m}_{2}}} \right)$ where a point $\left( a,b \right)$ divides a line with end coordinates $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ in the ratio ${{m}_{1}}:{{m}_{2}}$ , to find the other end coordinate of the diameter. We will use the fact that the centre of the circle is also the midpoint of the diameter of a circle.
Complete step by step answer:
We know if a point $\left( a,b \right)$ divides a line with end coordinates $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ in the ratio ${{m}_{1}}:{{m}_{2}}$, then
$\left( a,b \right)=\left( \dfrac{{{m}_{1}}{{x}_{2}}+{{m}_{2}}{{x}_{1}}}{{{m}_{1}}+{{m}_{2}}},\dfrac{{{m}_{1}}{{y}_{2}}+{{m}_{2}}{{y}_{1}}}{{{m}_{1}}+{{m}_{2}}} \right)\text{ }\ldots \left( i \right)$
We also know that the centre of a circle is its midpoint. And we know diameter is a line in a circle which passes through the centre. This implies that the centre of a circle divides the diameter in two equal parts. This means that the centre of a circle divides the diameter of a circle in an equal ratio, that is, 1:1.
Thus, here,
$\begin{align}
& \left( 2,3 \right)=\left( {{x}_{1}},{{y}_{1}} \right) \\
& \left( -2,5 \right)=\left( a,b \right) \\
& \left( x,y \right)=\left( {{x}_{2}},{{y}_{2}} \right) \\
& 1:1={{m}_{1}}:{{m}_{2}} \\
\end{align}$
Putting these values in equation (i), we get
$\begin{align}
& \text{ }\left( -2,5 \right)=\left( \dfrac{1\cdot x+1\cdot 2}{1+1},\dfrac{1\cdot y+1\cdot 3}{1+1} \right) \\
& \Rightarrow \left( -2,5 \right)=\left( \dfrac{x+2}{2},\dfrac{y+3}{2} \right) \\
\end{align}$
Opening the brackets, we get
$\begin{align}
& \text{ }\dfrac{x+2}{2}=-2 \\
& \Rightarrow x+2=-4 \\
& \Rightarrow x=-4-2=-6 \\
\end{align}$
And,
$\begin{align}
& \text{ }\dfrac{y+3}{2}=5 \\
& \Rightarrow y+3=10 \\
& \Rightarrow y=10-3=7 \\
\end{align}$
Thus, the coordinates are $\left( x,y \right)=\left( -6,7 \right)$
So, the correct answer is “Option A”.
Note: We should keep a cool mind while doing calculations to make it error free. We can use the formula $\left( a,b \right)=\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)$ directly when (a,b) is the midpoint of a line with end coordinates $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$.
For example, in this question,
$\begin{align}
& \left( {{x}_{1}},{{y}_{1}} \right)=\left( 2,3 \right) \\
& \left( a,b \right)=\left( -2,5 \right) \\
& \left( {{x}_{2}},{{y}_{2}} \right)=\left( x,y \right) \\
\end{align}$
Applying the formula, we get
$\left( -2,5 \right)=\left( \dfrac{x+2}{2},\dfrac{y+3}{2} \right)$
Solving this, we get
$\begin{align}
& \text{ }\dfrac{x+2}{2}=-2 \\
& \Rightarrow x+2=-4 \\
& \Rightarrow x=-4-2=-6 \\
\end{align}$
And, for y coordinate,
$\begin{align}
& \text{ }\dfrac{y+3}{2}=5 \\
& \Rightarrow y+3=10 \\
& \Rightarrow y=10-3=7 \\
\end{align}$
Thus, the coordinates are $\left( x,y \right)=\left( -6,7 \right)$
Clearly, this formula is more time-efficient.
Complete step by step answer:

We know if a point $\left( a,b \right)$ divides a line with end coordinates $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ in the ratio ${{m}_{1}}:{{m}_{2}}$, then
$\left( a,b \right)=\left( \dfrac{{{m}_{1}}{{x}_{2}}+{{m}_{2}}{{x}_{1}}}{{{m}_{1}}+{{m}_{2}}},\dfrac{{{m}_{1}}{{y}_{2}}+{{m}_{2}}{{y}_{1}}}{{{m}_{1}}+{{m}_{2}}} \right)\text{ }\ldots \left( i \right)$
We also know that the centre of a circle is its midpoint. And we know diameter is a line in a circle which passes through the centre. This implies that the centre of a circle divides the diameter in two equal parts. This means that the centre of a circle divides the diameter of a circle in an equal ratio, that is, 1:1.
Thus, here,
$\begin{align}
& \left( 2,3 \right)=\left( {{x}_{1}},{{y}_{1}} \right) \\
& \left( -2,5 \right)=\left( a,b \right) \\
& \left( x,y \right)=\left( {{x}_{2}},{{y}_{2}} \right) \\
& 1:1={{m}_{1}}:{{m}_{2}} \\
\end{align}$
Putting these values in equation (i), we get
$\begin{align}
& \text{ }\left( -2,5 \right)=\left( \dfrac{1\cdot x+1\cdot 2}{1+1},\dfrac{1\cdot y+1\cdot 3}{1+1} \right) \\
& \Rightarrow \left( -2,5 \right)=\left( \dfrac{x+2}{2},\dfrac{y+3}{2} \right) \\
\end{align}$
Opening the brackets, we get
$\begin{align}
& \text{ }\dfrac{x+2}{2}=-2 \\
& \Rightarrow x+2=-4 \\
& \Rightarrow x=-4-2=-6 \\
\end{align}$
And,
$\begin{align}
& \text{ }\dfrac{y+3}{2}=5 \\
& \Rightarrow y+3=10 \\
& \Rightarrow y=10-3=7 \\
\end{align}$
Thus, the coordinates are $\left( x,y \right)=\left( -6,7 \right)$
So, the correct answer is “Option A”.
Note: We should keep a cool mind while doing calculations to make it error free. We can use the formula $\left( a,b \right)=\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)$ directly when (a,b) is the midpoint of a line with end coordinates $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$.
For example, in this question,
$\begin{align}
& \left( {{x}_{1}},{{y}_{1}} \right)=\left( 2,3 \right) \\
& \left( a,b \right)=\left( -2,5 \right) \\
& \left( {{x}_{2}},{{y}_{2}} \right)=\left( x,y \right) \\
\end{align}$
Applying the formula, we get
$\left( -2,5 \right)=\left( \dfrac{x+2}{2},\dfrac{y+3}{2} \right)$
Solving this, we get
$\begin{align}
& \text{ }\dfrac{x+2}{2}=-2 \\
& \Rightarrow x+2=-4 \\
& \Rightarrow x=-4-2=-6 \\
\end{align}$
And, for y coordinate,
$\begin{align}
& \text{ }\dfrac{y+3}{2}=5 \\
& \Rightarrow y+3=10 \\
& \Rightarrow y=10-3=7 \\
\end{align}$
Thus, the coordinates are $\left( x,y \right)=\left( -6,7 \right)$
Clearly, this formula is more time-efficient.
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Which of the following is nitrogenfixing algae a Nostoc class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
