
If the chords of contact of tangent from the two points $ \left( -4,2 \right) $ and $ \left( 2,1 \right) $ to the hyperbola $ \dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 $ are at right angle, then find the eccentricity of the given hyperbola?
(a) $ \dfrac{\sqrt{7}}{2} $
(b) $ \sqrt{\dfrac{5}{3}} $
(c) $ \sqrt{\dfrac{3}{2}} $
(d) $ \sqrt{2} $
Answer
495k+ views
Hint: We start solving the problem by drawing the figure representing the given information. We then make use of the fact that the chord of contact from the point $ \left( {{x}_{1}},{{y}_{1}} \right) $ to the hyperbola $ \dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 $ is $ \dfrac{x{{x}_{1}}}{{{a}^{2}}}-\dfrac{y{{y}_{1}}}{{{b}^{2}}}=1 $ to find the chord of contacts from points $ \left( -4,2 \right) $ and $ \left( 2,1 \right) $ . We then find the slopes of both the chords and then make use of the fact that the product of slopes of two perpendicular lines is –1. We then make the necessary calculations to get the relation between $ {{a}^{2}} $ and $ {{b}^{2}} $ . We then make use of the fact that the eccentricity of the hyperbola $ \dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 $ is defined as $ e=\sqrt{\dfrac{{{a}^{2}}+{{b}^{2}}}{{{a}^{2}}}} $ to get the required answer.
Complete step by step answer:
According to the problem, we are given that the chords of contact of tangent from the two points $ \left( -4,2 \right) $ and $ \left( 2,1 \right) $ to the hyperbola $ \dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 $ are at right angle. We need to find the eccentricity of the given hyperbola.
Let us draw the figure representing the given information.
We know that the chord of contact from the point $ \left( {{x}_{1}},{{y}_{1}} \right) $ to the hyperbola $ \dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 $ is $ \dfrac{x{{x}_{1}}}{{{a}^{2}}}-\dfrac{y{{y}_{1}}}{{{b}^{2}}}=1 $ .
Now, let us find the chord of contact from the point $ \left( -4,2 \right) $ to the hyperbola $ \dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 $ is $ \dfrac{x\left( -4 \right)}{{{a}^{2}}}-\dfrac{y\left( 2 \right)}{{{b}^{2}}}=1 $ .
$ \Rightarrow \dfrac{-4{{b}^{2}}x-2{{a}^{2}}y}{{{a}^{2}}{{b}^{2}}}=1 $ .
$ \Rightarrow -4{{b}^{2}}x-2{{a}^{2}}y={{a}^{2}}{{b}^{2}} $ .
$ \Rightarrow -2{{a}^{2}}y=4{{b}^{2}}x+{{a}^{2}}{{b}^{2}} $ .
\[\Rightarrow y=\dfrac{4{{b}^{2}}}{-2{{a}^{2}}}x+\dfrac{{{a}^{2}}{{b}^{2}}}{\left( -2{{a}^{2}} \right)}\].
\[\Rightarrow y=\dfrac{-2{{b}^{2}}}{{{a}^{2}}}x-\dfrac{{{b}^{2}}}{2}\]. Comparing this with the equation of line $ y=mx+c $ , we get the slope as $ \dfrac{-2{{b}^{2}}}{{{a}^{2}}} $ ---(1).
Now, let us find the chord of contact from the point $ \left( 2,1 \right) $ to the hyperbola $ \dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 $ is $ \dfrac{x\left( 2 \right)}{{{a}^{2}}}-\dfrac{y\left( 1 \right)}{{{b}^{2}}}=1 $ .
$ \Rightarrow \dfrac{2{{b}^{2}}x-{{a}^{2}}y}{{{a}^{2}}{{b}^{2}}}=1 $ .
$ \Rightarrow 2{{b}^{2}}x-{{a}^{2}}y={{a}^{2}}{{b}^{2}} $ .
$ \Rightarrow {{a}^{2}}y=2{{b}^{2}}x+{{a}^{2}}{{b}^{2}} $ .
\[\Rightarrow y=\dfrac{2{{b}^{2}}}{{{a}^{2}}}x+\dfrac{{{a}^{2}}{{b}^{2}}}{{{a}^{2}}}\].
\[\Rightarrow y=\dfrac{2{{b}^{2}}}{{{a}^{2}}}x+{{b}^{2}}\]. Comparing this with the equation of line $ y=mx+c $ , we get the slope as $ \dfrac{2{{b}^{2}}}{{{a}^{2}}} $ ---(2).
We know that the product of slopes of two perpendicular lines is –1.
So, we get $ \left( \dfrac{-2{{b}^{2}}}{{{a}^{2}}} \right)\times \left( \dfrac{2{{b}^{2}}}{{{a}^{2}}} \right)=-1 $ .
$ \Rightarrow \dfrac{-4{{b}^{4}}}{{{a}^{4}}}=-1 $ .
$ \Rightarrow 4{{b}^{4}}={{a}^{4}} $ .
$ \Rightarrow {{a}^{2}}=2{{b}^{2}} $ ---(3).
We know that the eccentricity of the hyperbola $ \dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 $ is defined as $ e=\sqrt{\dfrac{{{a}^{2}}+{{b}^{2}}}{{{a}^{2}}}} $ .
From equation (3), we get $ e=\sqrt{\dfrac{2{{b}^{2}}+{{b}^{2}}}{2{{b}^{2}}}} $ .
$ \Rightarrow e=\sqrt{\dfrac{3{{b}^{2}}}{2{{b}^{2}}}} $ .
$ \Rightarrow e=\sqrt{\dfrac{3}{2}} $ .
We have found the eccentricity of the given hyperbola as $ \sqrt{\dfrac{3}{2}} $ .
$ \therefore $ The correct option for the given problem is (c).
Note:
We can see that the given problem contains a huge amount of calculation so, we need to perform each step carefully to avoid confusion and mistakes. We should not consider the negative root for $ {{a}^{2}} $ in equation (3), as it is positive for all real numbers. Here we are considered that the transverse axis of the parabola is the x-axis to solve the problem. Similarly, we can expect the problem to find the length of the latus-rectum of the given hyperbola.
Complete step by step answer:
According to the problem, we are given that the chords of contact of tangent from the two points $ \left( -4,2 \right) $ and $ \left( 2,1 \right) $ to the hyperbola $ \dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 $ are at right angle. We need to find the eccentricity of the given hyperbola.
Let us draw the figure representing the given information.

We know that the chord of contact from the point $ \left( {{x}_{1}},{{y}_{1}} \right) $ to the hyperbola $ \dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 $ is $ \dfrac{x{{x}_{1}}}{{{a}^{2}}}-\dfrac{y{{y}_{1}}}{{{b}^{2}}}=1 $ .
Now, let us find the chord of contact from the point $ \left( -4,2 \right) $ to the hyperbola $ \dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 $ is $ \dfrac{x\left( -4 \right)}{{{a}^{2}}}-\dfrac{y\left( 2 \right)}{{{b}^{2}}}=1 $ .
$ \Rightarrow \dfrac{-4{{b}^{2}}x-2{{a}^{2}}y}{{{a}^{2}}{{b}^{2}}}=1 $ .
$ \Rightarrow -4{{b}^{2}}x-2{{a}^{2}}y={{a}^{2}}{{b}^{2}} $ .
$ \Rightarrow -2{{a}^{2}}y=4{{b}^{2}}x+{{a}^{2}}{{b}^{2}} $ .
\[\Rightarrow y=\dfrac{4{{b}^{2}}}{-2{{a}^{2}}}x+\dfrac{{{a}^{2}}{{b}^{2}}}{\left( -2{{a}^{2}} \right)}\].
\[\Rightarrow y=\dfrac{-2{{b}^{2}}}{{{a}^{2}}}x-\dfrac{{{b}^{2}}}{2}\]. Comparing this with the equation of line $ y=mx+c $ , we get the slope as $ \dfrac{-2{{b}^{2}}}{{{a}^{2}}} $ ---(1).
Now, let us find the chord of contact from the point $ \left( 2,1 \right) $ to the hyperbola $ \dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 $ is $ \dfrac{x\left( 2 \right)}{{{a}^{2}}}-\dfrac{y\left( 1 \right)}{{{b}^{2}}}=1 $ .
$ \Rightarrow \dfrac{2{{b}^{2}}x-{{a}^{2}}y}{{{a}^{2}}{{b}^{2}}}=1 $ .
$ \Rightarrow 2{{b}^{2}}x-{{a}^{2}}y={{a}^{2}}{{b}^{2}} $ .
$ \Rightarrow {{a}^{2}}y=2{{b}^{2}}x+{{a}^{2}}{{b}^{2}} $ .
\[\Rightarrow y=\dfrac{2{{b}^{2}}}{{{a}^{2}}}x+\dfrac{{{a}^{2}}{{b}^{2}}}{{{a}^{2}}}\].
\[\Rightarrow y=\dfrac{2{{b}^{2}}}{{{a}^{2}}}x+{{b}^{2}}\]. Comparing this with the equation of line $ y=mx+c $ , we get the slope as $ \dfrac{2{{b}^{2}}}{{{a}^{2}}} $ ---(2).
We know that the product of slopes of two perpendicular lines is –1.
So, we get $ \left( \dfrac{-2{{b}^{2}}}{{{a}^{2}}} \right)\times \left( \dfrac{2{{b}^{2}}}{{{a}^{2}}} \right)=-1 $ .
$ \Rightarrow \dfrac{-4{{b}^{4}}}{{{a}^{4}}}=-1 $ .
$ \Rightarrow 4{{b}^{4}}={{a}^{4}} $ .
$ \Rightarrow {{a}^{2}}=2{{b}^{2}} $ ---(3).
We know that the eccentricity of the hyperbola $ \dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 $ is defined as $ e=\sqrt{\dfrac{{{a}^{2}}+{{b}^{2}}}{{{a}^{2}}}} $ .
From equation (3), we get $ e=\sqrt{\dfrac{2{{b}^{2}}+{{b}^{2}}}{2{{b}^{2}}}} $ .
$ \Rightarrow e=\sqrt{\dfrac{3{{b}^{2}}}{2{{b}^{2}}}} $ .
$ \Rightarrow e=\sqrt{\dfrac{3}{2}} $ .
We have found the eccentricity of the given hyperbola as $ \sqrt{\dfrac{3}{2}} $ .
$ \therefore $ The correct option for the given problem is (c).
Note:
We can see that the given problem contains a huge amount of calculation so, we need to perform each step carefully to avoid confusion and mistakes. We should not consider the negative root for $ {{a}^{2}} $ in equation (3), as it is positive for all real numbers. Here we are considered that the transverse axis of the parabola is the x-axis to solve the problem. Similarly, we can expect the problem to find the length of the latus-rectum of the given hyperbola.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

The aviation fuel used in the engines of jet airplanes class 10 physics CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Write examples of herbivores carnivores and omnivo class 10 biology CBSE

Select the word that is correctly spelled a Twelveth class 10 english CBSE
