
If the chord $y=mx+c$ subtends a right angle at the vertex of the parabola ${{y}^{2}}=4ax$, then the value of c is
(A) -4am
(B) 4am
(C) -2am
(D) 2am
Answer
574.8k+ views
Hint: We solve this question by first assuming the given chord intersects the parabola ${{y}^{2}}=4ax$ at the points $A\left( at_{1}^{2},2a{{t}_{1}} \right)$ and $B\left( at_{2}^{2},2a{{t}_{2}} \right)$. Then we find the slopes of the lines from point A to origin and line from B to origin and use the condition that the lines with slopes ${{m}_{1}}$ and ${{m}_{2}}$are perpendicular then ${{m}_{1}}{{m}_{2}}=-1$ to find the relation between ${{t}_{1}}$ and ${{t}_{2}}$. Then we find the equation of chord AB and compare with the equation of the given chord and find the value of c.
Complete step by step answer:
We are given that the chord $y=mx+c$ of the parabola ${{y}^{2}}=4ax$ and it subtends a right angle at the vertex.
Let us assume that the chord intersects the parabola ${{y}^{2}}=4ax$ at points $A\left( at_{1}^{2},2a{{t}_{1}} \right)$ and $B\left( at_{2}^{2},2a{{t}_{2}} \right)$.
Now let us find the slope of the lines from the vertex of the parabola, that is origin to the points A and B.
Slope of the line OA is
${{m}_{1}}=\dfrac{2a{{t}_{1}}-0}{at_{1}^{2}-0}=\dfrac{2a{{t}_{1}}}{at_{1}^{2}}=\dfrac{2}{{{t}_{1}}}$
Slope of the line OB is,
${{m}_{2}}=\dfrac{2a{{t}_{2}}-0}{at_{2}^{2}-0}=\dfrac{2a{{t}_{2}}}{at_{2}^{2}}=\dfrac{2}{{{t}_{2}}}$
As we are given that the chord bisects the right angle at the vertex of the parabola, the product of the slopes of the lines from origin to A and B is -1.
$\Rightarrow {{m}_{1}}{{m}_{2}}=-1$
Substituting the values of ${{m}_{1}}$ and ${{m}_{2}}$ in the above formula we get,
$\begin{align}
& \Rightarrow \dfrac{2}{{{t}_{1}}}\times \dfrac{2}{{{t}_{2}}}=-1 \\
& \Rightarrow {{t}_{1}}{{t}_{2}}=-4 \\
\end{align}$
Now let us find the equation of the chord AB.
Let us consider the formula for line joining $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ is
$\left( y-{{y}_{1}} \right)=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}\left( x-{{x}_{1}} \right)$
Using this we can find the equation of AB as,
$\begin{align}
& \Rightarrow \left( y-2a{{t}_{1}} \right)=\dfrac{2a{{t}_{2}}-2a{{t}_{1}}}{at_{2}^{2}-at_{1}^{2}}\left( x-at_{1}^{2} \right) \\
& \Rightarrow \left( y-2a{{t}_{1}} \right)=\dfrac{2a\left( {{t}_{2}}-{{t}_{1}} \right)}{a\left( t_{2}^{2}-t_{1}^{2} \right)}\left( x-at_{1}^{2} \right) \\
& \Rightarrow \left( y-2a{{t}_{1}} \right)=\dfrac{2}{{{t}_{2}}+{{t}_{1}}}\left( x-at_{1}^{2} \right) \\
\end{align}$
$\begin{align}
& \Rightarrow y=\dfrac{2}{{{t}_{2}}+{{t}_{1}}}x-\dfrac{2at_{1}^{2}}{{{t}_{2}}+{{t}_{1}}}+2a{{t}_{1}} \\
& \Rightarrow y=\dfrac{2}{{{t}_{2}}+{{t}_{1}}}x-\dfrac{2at_{1}^{2}-2a{{t}_{1}}\left( {{t}_{2}}+{{t}_{1}} \right)}{{{t}_{2}}+{{t}_{1}}} \\
\end{align}$
$\begin{align}
& \Rightarrow y=\dfrac{2}{{{t}_{2}}+{{t}_{1}}}x-\dfrac{2at_{1}^{2}-2a{{t}_{1}}{{t}_{2}}-2at_{1}^{2}}{{{t}_{2}}+{{t}_{1}}} \\
& \Rightarrow y=\dfrac{2}{{{t}_{2}}+{{t}_{1}}}x+\dfrac{2a{{t}_{1}}{{t}_{2}}}{{{t}_{2}}+{{t}_{1}}} \\
\end{align}$
Let us substitute the value of ${{t}_{1}}{{t}_{2}}=-4$ in the above equation.
$\begin{align}
& \Rightarrow y=\dfrac{2}{{{t}_{2}}+{{t}_{1}}}x+\dfrac{2a{{t}_{1}}{{t}_{2}}}{{{t}_{2}}+{{t}_{1}}} \\
& \Rightarrow y=\dfrac{2}{{{t}_{2}}+{{t}_{1}}}x+\dfrac{2a\left( -4 \right)}{{{t}_{2}}+{{t}_{1}}} \\
& \Rightarrow y=\dfrac{2}{{{t}_{2}}+{{t}_{1}}}x-\dfrac{8a}{{{t}_{2}}+{{t}_{1}}} \\
\end{align}$
As we are given that the equation of the chord is $y=mx+c$, let us compare the both equations.
$\begin{align}
& \Rightarrow m=\dfrac{2}{{{t}_{2}}+{{t}_{1}}} \\
& \Rightarrow c=-\dfrac{8a}{{{t}_{2}}+{{t}_{1}}} \\
\end{align}$
As we need to find the value of c,
$\begin{align}
& \Rightarrow c=-4a\left( \dfrac{2}{{{t}_{2}}+{{t}_{1}}} \right) \\
& \Rightarrow c=-4am \\
\end{align}$
Hence the value of c is -4am.
Hence, the answer is Option A.
Note:
The general mistake one does while solving this problem is one might take the formula for perpendicular lines wrong as, when two lines with slopes ${{m}_{1}}$ and ${{m}_{2}}$are perpendicular then ${{m}_{1}}{{m}_{2}}=1$. But actually, it is ${{m}_{1}}{{m}_{2}}=-1$.
Complete step by step answer:
We are given that the chord $y=mx+c$ of the parabola ${{y}^{2}}=4ax$ and it subtends a right angle at the vertex.
Let us assume that the chord intersects the parabola ${{y}^{2}}=4ax$ at points $A\left( at_{1}^{2},2a{{t}_{1}} \right)$ and $B\left( at_{2}^{2},2a{{t}_{2}} \right)$.
Now let us find the slope of the lines from the vertex of the parabola, that is origin to the points A and B.
Slope of the line OA is
${{m}_{1}}=\dfrac{2a{{t}_{1}}-0}{at_{1}^{2}-0}=\dfrac{2a{{t}_{1}}}{at_{1}^{2}}=\dfrac{2}{{{t}_{1}}}$
Slope of the line OB is,
${{m}_{2}}=\dfrac{2a{{t}_{2}}-0}{at_{2}^{2}-0}=\dfrac{2a{{t}_{2}}}{at_{2}^{2}}=\dfrac{2}{{{t}_{2}}}$
As we are given that the chord bisects the right angle at the vertex of the parabola, the product of the slopes of the lines from origin to A and B is -1.
$\Rightarrow {{m}_{1}}{{m}_{2}}=-1$
Substituting the values of ${{m}_{1}}$ and ${{m}_{2}}$ in the above formula we get,
$\begin{align}
& \Rightarrow \dfrac{2}{{{t}_{1}}}\times \dfrac{2}{{{t}_{2}}}=-1 \\
& \Rightarrow {{t}_{1}}{{t}_{2}}=-4 \\
\end{align}$
Now let us find the equation of the chord AB.
Let us consider the formula for line joining $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ is
$\left( y-{{y}_{1}} \right)=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}\left( x-{{x}_{1}} \right)$
Using this we can find the equation of AB as,
$\begin{align}
& \Rightarrow \left( y-2a{{t}_{1}} \right)=\dfrac{2a{{t}_{2}}-2a{{t}_{1}}}{at_{2}^{2}-at_{1}^{2}}\left( x-at_{1}^{2} \right) \\
& \Rightarrow \left( y-2a{{t}_{1}} \right)=\dfrac{2a\left( {{t}_{2}}-{{t}_{1}} \right)}{a\left( t_{2}^{2}-t_{1}^{2} \right)}\left( x-at_{1}^{2} \right) \\
& \Rightarrow \left( y-2a{{t}_{1}} \right)=\dfrac{2}{{{t}_{2}}+{{t}_{1}}}\left( x-at_{1}^{2} \right) \\
\end{align}$
$\begin{align}
& \Rightarrow y=\dfrac{2}{{{t}_{2}}+{{t}_{1}}}x-\dfrac{2at_{1}^{2}}{{{t}_{2}}+{{t}_{1}}}+2a{{t}_{1}} \\
& \Rightarrow y=\dfrac{2}{{{t}_{2}}+{{t}_{1}}}x-\dfrac{2at_{1}^{2}-2a{{t}_{1}}\left( {{t}_{2}}+{{t}_{1}} \right)}{{{t}_{2}}+{{t}_{1}}} \\
\end{align}$
$\begin{align}
& \Rightarrow y=\dfrac{2}{{{t}_{2}}+{{t}_{1}}}x-\dfrac{2at_{1}^{2}-2a{{t}_{1}}{{t}_{2}}-2at_{1}^{2}}{{{t}_{2}}+{{t}_{1}}} \\
& \Rightarrow y=\dfrac{2}{{{t}_{2}}+{{t}_{1}}}x+\dfrac{2a{{t}_{1}}{{t}_{2}}}{{{t}_{2}}+{{t}_{1}}} \\
\end{align}$
Let us substitute the value of ${{t}_{1}}{{t}_{2}}=-4$ in the above equation.
$\begin{align}
& \Rightarrow y=\dfrac{2}{{{t}_{2}}+{{t}_{1}}}x+\dfrac{2a{{t}_{1}}{{t}_{2}}}{{{t}_{2}}+{{t}_{1}}} \\
& \Rightarrow y=\dfrac{2}{{{t}_{2}}+{{t}_{1}}}x+\dfrac{2a\left( -4 \right)}{{{t}_{2}}+{{t}_{1}}} \\
& \Rightarrow y=\dfrac{2}{{{t}_{2}}+{{t}_{1}}}x-\dfrac{8a}{{{t}_{2}}+{{t}_{1}}} \\
\end{align}$
As we are given that the equation of the chord is $y=mx+c$, let us compare the both equations.
$\begin{align}
& \Rightarrow m=\dfrac{2}{{{t}_{2}}+{{t}_{1}}} \\
& \Rightarrow c=-\dfrac{8a}{{{t}_{2}}+{{t}_{1}}} \\
\end{align}$
As we need to find the value of c,
$\begin{align}
& \Rightarrow c=-4a\left( \dfrac{2}{{{t}_{2}}+{{t}_{1}}} \right) \\
& \Rightarrow c=-4am \\
\end{align}$
Hence the value of c is -4am.
Hence, the answer is Option A.
Note:
The general mistake one does while solving this problem is one might take the formula for perpendicular lines wrong as, when two lines with slopes ${{m}_{1}}$ and ${{m}_{2}}$are perpendicular then ${{m}_{1}}{{m}_{2}}=1$. But actually, it is ${{m}_{1}}{{m}_{2}}=-1$.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

