
If the arcs of same length in two circles subtends angles \[{{60}^{\circ }}\]and \[{{75}^{\circ }}\]at the centre, find the ratio of their radii.
Answer
590.7k+ views
Hint: When a certain external force is applied on a pendulum, it moves back and forth with periodic motion. So it is displaced by a certain angle and it is found using the formula \[l=r\theta \]here l is arc length and “r” is radius or length of pendulum. Convert the given degrees to radians and find the values for \[{{r}_{1}}\]and \[{{r}_{2}}\].
Complete step-by-step answer:
Given, the arcs of same length in two circles subtend \[{{60}^{\circ }}\]and \[{{75}^{\circ }}\]at the centre
Let the radii of two circles be \[{{r}_{1}}\]and \[{{r}_{2}}\]. Let an arc of length l subtends an angle \[{{60}^{\circ }}\]at the centre of circle of radius \[{{r}_{1}}\]
Now an arc of length l subtends an angle \[{{75}^{\circ }}\]at the centre of the circle of radius \[{{r}_{2}}\].
We know that the length of the arc is given by the formula \[l=r\theta \]
\[{{60}^{\circ }}=\dfrac{\pi }{3}radian\]and \[{{75}^{\circ }}=\dfrac{5\pi }{12}radian\]
\[l=\dfrac{{{r}_{1}}\pi }{3}\]for circle with radius \[{{r}_{1}}\]and arc length l . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
\[l=\dfrac{{{r}_{2}}5\pi }{12}\]for circle with radius \[{{r}_{2}}\]and arc length l . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
Equation (1)=equation(2)
\[\dfrac{{{r}_{1}}\pi }{3}=\dfrac{{{r}_{2}}5\pi }{12}\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
\[\Rightarrow {{r}_{1}}=\dfrac{{{r}_{2}}5}{4}\]
\[\Rightarrow \dfrac{{{r}_{1}}}{{{r}_{2}}}=\dfrac{5}{4}\]
Note: The length of the arc is given by formula \[l=r\theta \] in this \[\theta \] is the angle subtended and it is in radians but in the problem \[\theta \] is given in degrees so we have to convert to radians. To convert degrees to radians we have to multiply the given degrees with \[\dfrac{\pi }{180}\] then we will get angle subtended in radians.
Complete step-by-step answer:
Given, the arcs of same length in two circles subtend \[{{60}^{\circ }}\]and \[{{75}^{\circ }}\]at the centre
Let the radii of two circles be \[{{r}_{1}}\]and \[{{r}_{2}}\]. Let an arc of length l subtends an angle \[{{60}^{\circ }}\]at the centre of circle of radius \[{{r}_{1}}\]
Now an arc of length l subtends an angle \[{{75}^{\circ }}\]at the centre of the circle of radius \[{{r}_{2}}\].
We know that the length of the arc is given by the formula \[l=r\theta \]
\[{{60}^{\circ }}=\dfrac{\pi }{3}radian\]and \[{{75}^{\circ }}=\dfrac{5\pi }{12}radian\]
\[l=\dfrac{{{r}_{1}}\pi }{3}\]for circle with radius \[{{r}_{1}}\]and arc length l . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
\[l=\dfrac{{{r}_{2}}5\pi }{12}\]for circle with radius \[{{r}_{2}}\]and arc length l . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
Equation (1)=equation(2)
\[\dfrac{{{r}_{1}}\pi }{3}=\dfrac{{{r}_{2}}5\pi }{12}\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
\[\Rightarrow {{r}_{1}}=\dfrac{{{r}_{2}}5}{4}\]
\[\Rightarrow \dfrac{{{r}_{1}}}{{{r}_{2}}}=\dfrac{5}{4}\]
Note: The length of the arc is given by formula \[l=r\theta \] in this \[\theta \] is the angle subtended and it is in radians but in the problem \[\theta \] is given in degrees so we have to convert to radians. To convert degrees to radians we have to multiply the given degrees with \[\dfrac{\pi }{180}\] then we will get angle subtended in radians.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Who was the first woman to receive Bharat Ratna?

Write a letter to the principal requesting him to grant class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

