
If the algebraic sum of the perpendicular distances from the points (2,0), (0,2) & (1,1) to a variable straight line be zero, then the line passes through the point
A. (-1, 1)
B. (1, 1)
C. (1, -1)
D. (-1, -1)
Answer
602.1k+ views
Hint: As mentioned in this question, we have perpendicular distances from the points (2,0), (0,2) & (1,1) to a variable straight line. First, we consider a general equation of a variable straight-line ax+by+c=0, Which represents a family of straight lines passing through a fixed point. And then after we use a formula for calculating the perpendicular distance between a straight line and a point.
The perpendicular distance of P (x1, y1) from the line ax + by + c = 0 is $\dfrac{{{\text{a}}{{\text{x}}_{\text{1}}}{\text{ + b}}{{\text{y}}_{\text{1}}}{\text{ + c}}}}{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ + }}{{\text{b}}^{\text{2}}}} }}$
Complete step-by-step answer:
Let the variable line be ax+by+c=0.
Given, the algebraic sum of the perpendicular from the points (2,0), (0,2) and (1,1) to this line is zero.
the perpendicular distance of P (x1, y1) from the line ax + by + c = 0 is $\dfrac{{{\text{a}}{{\text{x}}_{\text{1}}}{\text{ + b}}{{\text{y}}_{\text{1}}}{\text{ + c}}}}{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ + }}{{\text{b}}^{\text{2}}}} }}$
So, as given in question, the algebraic sum of the perpendicular distances from the points (2,0), (0,2) & (1,1) to a variable straight line be zero.
$ \Rightarrow $ $\dfrac{{{\text{2a + 0 + c}}}}{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ + }}{{\text{b}}^{\text{2}}}} }} + \dfrac{{{\text{0 + 2b + c}}}}{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ + }}{{\text{b}}^{\text{2}}}} }} + \dfrac{{{\text{a + b + c}}}}{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ + }}{{\text{b}}^{\text{2}}}} }}$ = 0
⇒2a+c+2b+c+a+b+c=0
⇒3a+3b+3c=0
⇒a+b+c=0
This is a linear relation between a, b and c.
So, the equation ax+by+c=0 represents a family of straight lines passing through a fixed point.
Comparing,
ax+by+c=0 and a+b+c=0.
We obtain, x=1, y=1 i.e.
The coordinates of fixed points are (1,1).
So, option (B) is the correct answer.
Note- When we say distance, we mean the shortest possible distance from the point to the line, which happens to be when the distance line through the point is also perpendicular to the line. But why is the shortest line segment perpendicular? This is because the longest side in a right triangle is the hypotenuse.
The perpendicular distance of P (x1, y1) from the line ax + by + c = 0 is $\dfrac{{{\text{a}}{{\text{x}}_{\text{1}}}{\text{ + b}}{{\text{y}}_{\text{1}}}{\text{ + c}}}}{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ + }}{{\text{b}}^{\text{2}}}} }}$
Complete step-by-step answer:
Let the variable line be ax+by+c=0.
Given, the algebraic sum of the perpendicular from the points (2,0), (0,2) and (1,1) to this line is zero.
the perpendicular distance of P (x1, y1) from the line ax + by + c = 0 is $\dfrac{{{\text{a}}{{\text{x}}_{\text{1}}}{\text{ + b}}{{\text{y}}_{\text{1}}}{\text{ + c}}}}{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ + }}{{\text{b}}^{\text{2}}}} }}$
So, as given in question, the algebraic sum of the perpendicular distances from the points (2,0), (0,2) & (1,1) to a variable straight line be zero.
$ \Rightarrow $ $\dfrac{{{\text{2a + 0 + c}}}}{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ + }}{{\text{b}}^{\text{2}}}} }} + \dfrac{{{\text{0 + 2b + c}}}}{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ + }}{{\text{b}}^{\text{2}}}} }} + \dfrac{{{\text{a + b + c}}}}{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ + }}{{\text{b}}^{\text{2}}}} }}$ = 0
⇒2a+c+2b+c+a+b+c=0
⇒3a+3b+3c=0
⇒a+b+c=0
This is a linear relation between a, b and c.
So, the equation ax+by+c=0 represents a family of straight lines passing through a fixed point.
Comparing,
ax+by+c=0 and a+b+c=0.
We obtain, x=1, y=1 i.e.
The coordinates of fixed points are (1,1).
So, option (B) is the correct answer.
Note- When we say distance, we mean the shortest possible distance from the point to the line, which happens to be when the distance line through the point is also perpendicular to the line. But why is the shortest line segment perpendicular? This is because the longest side in a right triangle is the hypotenuse.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

