If the abscissa and ordinates of two points P and Q are the roots of the equations \[{{x}^{2}}+2ax-{{b}^{2}}=0\text{ and }{{x}^{2}}+2px-{{q}^{2}}=0\] respectively, then equation of the circle with PQ as diameter is:
Last updated date: 21st Mar 2023
•
Total views: 305.4k
•
Views today: 3.83k
Answer
305.4k+ views
Hint : In this question, we first need to find the roots of the given quadratic equations which gives us the abscissa and ordinates of the required diameter. Then by substituting these values of abscissa and ordinates in the formula of the circle equation when the coordinates of the end points of the diameter are given.
Complete step-by-step answer:
\[\left( x-{{x}_{1}} \right)\left( x-{{x}_{2}} \right)+\left( y-{{y}_{1}} \right)\left( y-{{y}_{2}} \right)=0\]
QUADRATIC EQUATION: In algebra, a quadratic equation is any equation that can be rearranged in standard form as where x represents an unknown and a, b, c represent known numbers, where \[a\ne 0\].
If the roots of the quadratic equation \[a{{x}^{2}}+bx+c=0\left( a\ne 0 \right)\] are \[\alpha \] and \[\beta \] , then
\[\begin{align}
& \alpha +\beta =\dfrac{-b}{a} \\
& \alpha \cdot \beta =\dfrac{c}{a} \\
\end{align}\]
Now, let us assume that the roots of the equations be:
\[{{x}^{2}}+2ax-{{b}^{2}}=0\] are x1 and x2.
\[\text{ }{{x}^{2}}+2px-{{q}^{2}}=0\] are y1 and y2.
By substituting these in the above summation and product of the roots formula we get,
\[\begin{align}
& {{x}_{1}}+{{x}_{2}}=-2a \\
& {{x}_{1}}\cdot {{x}_{2}}=-{{b}^{2}} \\
& {{y}_{1}}+{{y}_{2}}=-2p \\
& {{y}_{1}}\cdot {{y}_{2}}=-{{q}^{2}} \\
\end{align}\]
CIRCLE: Circle is defined as the locus of a point which moves in a plane such that its distance from a fixed point in that plane is constant.
DIAMETER: A diameter of a circle is any straight line segment that passes through the centre of the circle and whose endpoints lie on the circle.
Equation of the circle, when the coordinates of endpoints of a diameter are
\[\left( {{x}_{1}},{{y}_{1}} \right)\text{ }and\text{ }\left( {{x}_{2}},{{y}_{2}} \right)\]:
\[\left( x-{{x}_{1}} \right)\left( x-{{x}_{2}} \right)+\left( y-{{y}_{1}} \right)\left( y-{{y}_{2}} \right)=0\]
Now, on multiplying the terms in this equation we get,
\[\Rightarrow {{x}^{2}}-{{x}_{2}}x-{{x}_{1}}x+{{x}_{1}}\cdot
{{x}_{2}}+{{y}^{2}}-{{y}_{2}}y-{{y}_{1}}y+{{y}_{1}}\cdot {{y}_{2}}=0\]
\[\Rightarrow {{x}^{2}}-\left( {{x}_{1}}+{{x}_{2}} \right)x+{{x}_{1}}\cdot
{{x}_{2}}+{{y}^{2}}-\left( {{y}_{1}}+{{y}_{2}} \right)y+{{y}_{1}}\cdot {{y}_{2}}=0\]
By substituting respective values in the above equation we get,
\[\begin{align}
& \Rightarrow {{x}^{2}}-\left( -2a \right)x+\left( -{{b}^{2}} \right)+{{y}^{2}}-\left( -2p
\right)y+\left( -{{q}^{2}} \right)=0 \\
& \Rightarrow {{x}^{2}}+2ax-{{b}^{2}}+{{y}^{2}}+2py-{{q}^{2}}=0 \\
\end{align}\]
Let us rearrange the terms in the above equation.
\[\therefore {{x}^{2}}+{{y}^{2}}+2ax+2py-{{b}^{2}}-{{q}^{2}}=0\]
Note: Instead of using the summation and product of the roots of the quadratic equation we can use direct formula and find the roots of the given quadratic equations which gives the coordinates of the points P and Q. After finding the roots of the equations we get coordinates of points P and Q. Now, as P and Q are the endpoints of the diameter we can find the midpoint which will be the centre of the circle. Then distance between this centre and one of the end points of the diameter gives the radius of the circle. By using the equation of the circle having centre (h, k) and radius a is \[{{\left( x-h \right)}^{2}}+{{\left( y-k \right)}^{2}}={{a}^{2}}\]. We can find the equation of the circle in this way also which gives the same result but a bit lengthy.
Complete step-by-step answer:
\[\left( x-{{x}_{1}} \right)\left( x-{{x}_{2}} \right)+\left( y-{{y}_{1}} \right)\left( y-{{y}_{2}} \right)=0\]
QUADRATIC EQUATION: In algebra, a quadratic equation is any equation that can be rearranged in standard form as where x represents an unknown and a, b, c represent known numbers, where \[a\ne 0\].
If the roots of the quadratic equation \[a{{x}^{2}}+bx+c=0\left( a\ne 0 \right)\] are \[\alpha \] and \[\beta \] , then
\[\begin{align}
& \alpha +\beta =\dfrac{-b}{a} \\
& \alpha \cdot \beta =\dfrac{c}{a} \\
\end{align}\]
Now, let us assume that the roots of the equations be:
\[{{x}^{2}}+2ax-{{b}^{2}}=0\] are x1 and x2.
\[\text{ }{{x}^{2}}+2px-{{q}^{2}}=0\] are y1 and y2.
By substituting these in the above summation and product of the roots formula we get,
\[\begin{align}
& {{x}_{1}}+{{x}_{2}}=-2a \\
& {{x}_{1}}\cdot {{x}_{2}}=-{{b}^{2}} \\
& {{y}_{1}}+{{y}_{2}}=-2p \\
& {{y}_{1}}\cdot {{y}_{2}}=-{{q}^{2}} \\
\end{align}\]
CIRCLE: Circle is defined as the locus of a point which moves in a plane such that its distance from a fixed point in that plane is constant.
DIAMETER: A diameter of a circle is any straight line segment that passes through the centre of the circle and whose endpoints lie on the circle.
Equation of the circle, when the coordinates of endpoints of a diameter are
\[\left( {{x}_{1}},{{y}_{1}} \right)\text{ }and\text{ }\left( {{x}_{2}},{{y}_{2}} \right)\]:
\[\left( x-{{x}_{1}} \right)\left( x-{{x}_{2}} \right)+\left( y-{{y}_{1}} \right)\left( y-{{y}_{2}} \right)=0\]
Now, on multiplying the terms in this equation we get,
\[\Rightarrow {{x}^{2}}-{{x}_{2}}x-{{x}_{1}}x+{{x}_{1}}\cdot
{{x}_{2}}+{{y}^{2}}-{{y}_{2}}y-{{y}_{1}}y+{{y}_{1}}\cdot {{y}_{2}}=0\]
\[\Rightarrow {{x}^{2}}-\left( {{x}_{1}}+{{x}_{2}} \right)x+{{x}_{1}}\cdot
{{x}_{2}}+{{y}^{2}}-\left( {{y}_{1}}+{{y}_{2}} \right)y+{{y}_{1}}\cdot {{y}_{2}}=0\]
By substituting respective values in the above equation we get,
\[\begin{align}
& \Rightarrow {{x}^{2}}-\left( -2a \right)x+\left( -{{b}^{2}} \right)+{{y}^{2}}-\left( -2p
\right)y+\left( -{{q}^{2}} \right)=0 \\
& \Rightarrow {{x}^{2}}+2ax-{{b}^{2}}+{{y}^{2}}+2py-{{q}^{2}}=0 \\
\end{align}\]
Let us rearrange the terms in the above equation.
\[\therefore {{x}^{2}}+{{y}^{2}}+2ax+2py-{{b}^{2}}-{{q}^{2}}=0\]
Note: Instead of using the summation and product of the roots of the quadratic equation we can use direct formula and find the roots of the given quadratic equations which gives the coordinates of the points P and Q. After finding the roots of the equations we get coordinates of points P and Q. Now, as P and Q are the endpoints of the diameter we can find the midpoint which will be the centre of the circle. Then distance between this centre and one of the end points of the diameter gives the radius of the circle. By using the equation of the circle having centre (h, k) and radius a is \[{{\left( x-h \right)}^{2}}+{{\left( y-k \right)}^{2}}={{a}^{2}}\]. We can find the equation of the circle in this way also which gives the same result but a bit lengthy.
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
