
If the $56^{th}$ term of an AP is $\dfrac{10}{37}$, find the sum of the first 111 terms.
Answer
570.9k+ views
Hint: Here, we have been given the $56^{th}$ term of an AP and we have to find the sum of the first 111 terms of the respective AP. For this, we will first write the given term, i.e. the $56^{th}$ term in the form of the first term ‘a’ and common difference ‘d’ by using the formula ${{a}_{n}}=a+\left( n-1 \right)d$. Then we will write the sum of the first 111 terms in terms of ‘a’ and ‘d’ too using the formula $Sum=\dfrac{n}{2}\left( 2a+\left( n-1 \right)d \right)$. Then we will compare the 2 equations thus formed and hence we will get the value of the sum. Thus, we will get our required answer.
Complete step by step answer:
Here, we have been given the $56^{th}$ term of an AP to be $\dfrac{10}{37}$. Now, we know that the $n^{th}$ term of an AP with first term ‘a’ and common difference ‘d’ is given as:
${{a}_{n}}=a+\left( n-1 \right)d$
Here, we have:
$\begin{align}
& n=56 \\
& {{a}_{n}}=\dfrac{10}{37} \\
\end{align}$
Thus, for this AP, we get:
$\dfrac{10}{37}=a+\left( 56-1 \right)d$
$\Rightarrow \dfrac{10}{37}=a+55d$ …..(i)
Now, we have to find the sum of the first 111 terms of this AP.
We know that the sum of ‘n’ terms of an AP is given as:
$Sum=\dfrac{n}{2}\left( 2a+\left( n-1 \right)d \right)$
Here, we have:
$n=111$
Thus, the sum will be:
$\begin{align}
& Sum=\dfrac{111}{2}\left( 2a+\left( 111-1 \right)d \right) \\
& \Rightarrow Sum=\dfrac{111}{2}\left( 2a+110d \right) \\
\end{align}$
Now, simplifying it we get:
$\begin{align}
& Sum=\dfrac{111}{2}\left( 2a+110d \right) \\
& \Rightarrow Sum=\dfrac{111}{2}\left( 2\left( a+55d \right) \right) \\
\end{align}$
$\Rightarrow Sum=111\left( a+55d \right)$ …..(ii)
Now, putting the value of equation (i) in equation (ii), we get:
$\begin{align}
& Sum=111\left( a+55d \right) \\
& \Rightarrow Sum=111\left( \dfrac{10}{37} \right) \\
\end{align}$
Solving it we get:
$\begin{align}
& Sum=111\left( \dfrac{10}{37} \right) \\
& \Rightarrow Sum=3\left( 10 \right) \\
& \therefore Sum=30 \\
\end{align}$
Thus, the required sum is 30.
Note: We could have also divided equations (i) and (ii) to obtain the answer. This is shown as follows:
$\begin{align}
& \dfrac{equation\left( ii \right)}{equation\left( i \right)} \\
& \Rightarrow \dfrac{Sum}{\dfrac{10}{37}}=\dfrac{111\left( a+55d \right)}{a+55d} \\
& \Rightarrow \dfrac{Sum}{\dfrac{10}{37}}=111 \\
& \Rightarrow Sum=111\left( \dfrac{10}{37} \right) \\
& \therefore Sum=30 \\
\end{align}$
Complete step by step answer:
Here, we have been given the $56^{th}$ term of an AP to be $\dfrac{10}{37}$. Now, we know that the $n^{th}$ term of an AP with first term ‘a’ and common difference ‘d’ is given as:
${{a}_{n}}=a+\left( n-1 \right)d$
Here, we have:
$\begin{align}
& n=56 \\
& {{a}_{n}}=\dfrac{10}{37} \\
\end{align}$
Thus, for this AP, we get:
$\dfrac{10}{37}=a+\left( 56-1 \right)d$
$\Rightarrow \dfrac{10}{37}=a+55d$ …..(i)
Now, we have to find the sum of the first 111 terms of this AP.
We know that the sum of ‘n’ terms of an AP is given as:
$Sum=\dfrac{n}{2}\left( 2a+\left( n-1 \right)d \right)$
Here, we have:
$n=111$
Thus, the sum will be:
$\begin{align}
& Sum=\dfrac{111}{2}\left( 2a+\left( 111-1 \right)d \right) \\
& \Rightarrow Sum=\dfrac{111}{2}\left( 2a+110d \right) \\
\end{align}$
Now, simplifying it we get:
$\begin{align}
& Sum=\dfrac{111}{2}\left( 2a+110d \right) \\
& \Rightarrow Sum=\dfrac{111}{2}\left( 2\left( a+55d \right) \right) \\
\end{align}$
$\Rightarrow Sum=111\left( a+55d \right)$ …..(ii)
Now, putting the value of equation (i) in equation (ii), we get:
$\begin{align}
& Sum=111\left( a+55d \right) \\
& \Rightarrow Sum=111\left( \dfrac{10}{37} \right) \\
\end{align}$
Solving it we get:
$\begin{align}
& Sum=111\left( \dfrac{10}{37} \right) \\
& \Rightarrow Sum=3\left( 10 \right) \\
& \therefore Sum=30 \\
\end{align}$
Thus, the required sum is 30.
Note: We could have also divided equations (i) and (ii) to obtain the answer. This is shown as follows:
$\begin{align}
& \dfrac{equation\left( ii \right)}{equation\left( i \right)} \\
& \Rightarrow \dfrac{Sum}{\dfrac{10}{37}}=\dfrac{111\left( a+55d \right)}{a+55d} \\
& \Rightarrow \dfrac{Sum}{\dfrac{10}{37}}=111 \\
& \Rightarrow Sum=111\left( \dfrac{10}{37} \right) \\
& \therefore Sum=30 \\
\end{align}$
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

