
If \[ta{{n}^{-1}}a+ta{{n}^{-1}}b+ta{{n}^{-1}}c=\pi \], prove that a+ b + c = abc.
Answer
614.4k+ views
Hint: For solving this problem, first we apply the addition identity for the inverse of tan function to simplify the expression on the left hand side. After getting a simplified expression, we apply tan function to both sides. By using this methodology, we can easily obtain our answer.
Complete step-by-step answer:
First, we take left-hand side to simplify:
\[\Rightarrow ta{{n}^{-1}}a+ta{{n}^{-1}}b+ta{{n}^{-1}}c\]
Now, by applying the trigonometric property \[ta{{n}^{-1}}x+ta{{n}^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)\], we get
\[\Rightarrow ta{{n}^{-1}}\left( \dfrac{a+b}{1-ab} \right)+ta{{n}^{-1}}c\]
Applying the same formula again in the \[ta{{n}^{-1}}\left( \dfrac{a+b}{1-ab} \right)+ta{{n}^{-1}}c\] to simplify it further, we get
$\begin{align}
& \Rightarrow ta{{n}^{-1}}\left( \dfrac{\dfrac{a+b}{1-ab}+c}{1-\left( \dfrac{a+b}{1-ab} \right)c} \right) \\
& \Rightarrow ta{{n}^{-1}}\left( \dfrac{\dfrac{a+b+c-abc}{1-ab}}{\dfrac{1-ab-ac-bc}{1-ab}} \right) \\
& \Rightarrow ta{{n}^{-1}}\left( \dfrac{a+b+c-abc}{1-ab-bc-ca} \right) \\
\end{align}$
Now, by using the right-hand side, we get
${{\tan }^{-1}}\left( \dfrac{a+b+c-abc}{1-ab-bc-ca} \right)=\pi $
Applying tan operation to both sides, we get
$\dfrac{a+b+c-abc}{1-ab-bc-ca}=\tan (\pi )$
As we know that the value of $\tan (\pi )$ is 0 and ${{\tan }^{-1}}\left( \tan \theta \right)=\theta $, so we simplified the above expression as,
$\dfrac{a+b+c-abc}{1-ab-bc-ca}=0$
Now, taking the denominator of the left-hand side to the right-hand side and multiplying it with 0. So, the right-hand side is 0. So, the remaining equation is
$\begin{align}
& \Rightarrow a+b+c-abc=0 \\
& \Rightarrow a+b+c=abc \\
\end{align}$
Hence, we proved the equivalence of both sides as required in the problem.
Note: The key concept involved in solving this problem is the knowledge of inverse properties related to tan function. Students must be careful while solving the fraction which involves a variety of terms. Silly mistakes are bound to occur in that particular section.
Complete step-by-step answer:
First, we take left-hand side to simplify:
\[\Rightarrow ta{{n}^{-1}}a+ta{{n}^{-1}}b+ta{{n}^{-1}}c\]
Now, by applying the trigonometric property \[ta{{n}^{-1}}x+ta{{n}^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)\], we get
\[\Rightarrow ta{{n}^{-1}}\left( \dfrac{a+b}{1-ab} \right)+ta{{n}^{-1}}c\]
Applying the same formula again in the \[ta{{n}^{-1}}\left( \dfrac{a+b}{1-ab} \right)+ta{{n}^{-1}}c\] to simplify it further, we get
$\begin{align}
& \Rightarrow ta{{n}^{-1}}\left( \dfrac{\dfrac{a+b}{1-ab}+c}{1-\left( \dfrac{a+b}{1-ab} \right)c} \right) \\
& \Rightarrow ta{{n}^{-1}}\left( \dfrac{\dfrac{a+b+c-abc}{1-ab}}{\dfrac{1-ab-ac-bc}{1-ab}} \right) \\
& \Rightarrow ta{{n}^{-1}}\left( \dfrac{a+b+c-abc}{1-ab-bc-ca} \right) \\
\end{align}$
Now, by using the right-hand side, we get
${{\tan }^{-1}}\left( \dfrac{a+b+c-abc}{1-ab-bc-ca} \right)=\pi $
Applying tan operation to both sides, we get
$\dfrac{a+b+c-abc}{1-ab-bc-ca}=\tan (\pi )$
As we know that the value of $\tan (\pi )$ is 0 and ${{\tan }^{-1}}\left( \tan \theta \right)=\theta $, so we simplified the above expression as,
$\dfrac{a+b+c-abc}{1-ab-bc-ca}=0$
Now, taking the denominator of the left-hand side to the right-hand side and multiplying it with 0. So, the right-hand side is 0. So, the remaining equation is
$\begin{align}
& \Rightarrow a+b+c-abc=0 \\
& \Rightarrow a+b+c=abc \\
\end{align}$
Hence, we proved the equivalence of both sides as required in the problem.
Note: The key concept involved in solving this problem is the knowledge of inverse properties related to tan function. Students must be careful while solving the fraction which involves a variety of terms. Silly mistakes are bound to occur in that particular section.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

