
If $\tan \theta =\dfrac{p}{q}$, then find the value of the expression $\dfrac{p\sin \theta -q\cos \theta }{p\sin \theta +q\cos \theta }$
Answer
589.5k+ views
Hint: Use the fact that $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$. Hence assume that $\sin \theta =pk,\cos \theta =qk$. Hence find the value of $p\sin \theta +q\cos \theta $ and the value of $p\sin \theta -q\cos \theta $. Divide the two expressions and hence find the value of $\dfrac{p\sin \theta -q\cos \theta }{p\sin \theta +q\cos \theta }$. Alternatively divide the numerator and the denominator of the expression $\dfrac{p\sin \theta -q\cos \theta }{p\sin \theta +q\cos \theta }$ by $\cos \theta $ and use the fact that $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and hence find the value of the given expression.
Complete step by step answer:
We know that $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$
Hence, we have
$\dfrac{\sin \theta }{\cos \theta }=\dfrac{p}{q}$
Let $\sin \theta =pk$ and $\cos \theta =qk$
Hence, we have
$p\sin \theta +q\cos \theta =p\left( pk \right)+q\left( qk \right)={{p}^{2}}k+{{q}^{2}}k$
Taking k common from the terms on RHS, we get
$p\sin \theta +q\cos \theta =k\left( {{p}^{2}}+{{q}^{2}} \right)$
Similarly, we have
$p\sin \theta -q\cos \theta =p\left( pk \right)-q\left( qk \right)=\left( {{p}^{2}}-{{q}^{2}} \right)k$
Hence, we have
$\dfrac{p\sin \theta -q\cos \theta }{p\sin \theta +q\cos \theta }=\dfrac{{{p}^{2}}-{{q}^{2}}}{{{p}^{2}}+{{q}^{2}}}$
Hence the value of $\dfrac{p\sin \theta -q\cos \theta }{p\sin \theta +q\cos \theta }$ is $\dfrac{{{p}^{2}}-{{q}^{2}}}{{{p}^{2}}+{{q}^{2}}}$
Note: Alternative Solution: Best Method
We can solve the above question using componendo-dividendo which states that if $\dfrac{a}{b}=\dfrac{c}{d}$, then $\dfrac{a-b}{a+b}=\dfrac{c-d}{c+d}$
We know that $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$
Hence, we have
$\dfrac{\sin \theta }{\cos \theta }=\dfrac{p}{q}$
Multiplying both sides by $\dfrac{p}{q}$, we get
$\dfrac{p\sin \theta }{q\cos \theta }=\dfrac{{{p}^{2}}}{{{q}^{2}}}$
Applying componendo-dividendo, we get
$\dfrac{p\sin \theta -q\cos \theta }{p\sin \theta +q\cos \theta }=\dfrac{{{p}^{2}}-{{q}^{2}}}{{{p}^{2}}+{{q}^{2}}}$, which is the same as obtained above
[2] Alternative Solution:
Dividing numerator and denominator of the expression $\dfrac{p\sin \theta -q\cos \theta }{p\sin \theta +q\cos \theta }$ by $\cos \theta $, we get
$\dfrac{p\sin \theta -q\cos \theta }{p\sin \theta +q\cos \theta }=\dfrac{\dfrac{p\sin \theta -q\cos \theta }{\cos \theta }}{\dfrac{p\sin \theta +q\cos \theta }{\cos \theta }}$
We know that $\dfrac{a\pm b}{c}=\dfrac{a}{c}\pm \dfrac{b}{c}$
Using the above identity, we get
$\dfrac{p\sin \theta -q\cos \theta }{p\sin \theta +q\cos \theta }=\dfrac{p\dfrac{\sin \theta }{\cos \theta }-q}{p\dfrac{\sin \theta }{\cos \theta }+q}$
We know that $\tan \theta =\dfrac{p}{q}$
Hence, we have
$\dfrac{p\sin \theta -q\cos \theta }{p\sin \theta +q\cos \theta }=\dfrac{p\left( \dfrac{p}{q} \right)-q}{p\left( \dfrac{p}{q} \right)+q}$
Multiplying numerator and denominator of RHS by q, we get
$\dfrac{p\sin \theta -q\cos \theta }{p\sin \theta +q\cos \theta }=\dfrac{{{p}^{2}}-{{q}^{2}}}{{{p}^{2}}+{{q}^{2}}}$, which is the same as obtained above.
Complete step by step answer:
We know that $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$
Hence, we have
$\dfrac{\sin \theta }{\cos \theta }=\dfrac{p}{q}$
Let $\sin \theta =pk$ and $\cos \theta =qk$
Hence, we have
$p\sin \theta +q\cos \theta =p\left( pk \right)+q\left( qk \right)={{p}^{2}}k+{{q}^{2}}k$
Taking k common from the terms on RHS, we get
$p\sin \theta +q\cos \theta =k\left( {{p}^{2}}+{{q}^{2}} \right)$
Similarly, we have
$p\sin \theta -q\cos \theta =p\left( pk \right)-q\left( qk \right)=\left( {{p}^{2}}-{{q}^{2}} \right)k$
Hence, we have
$\dfrac{p\sin \theta -q\cos \theta }{p\sin \theta +q\cos \theta }=\dfrac{{{p}^{2}}-{{q}^{2}}}{{{p}^{2}}+{{q}^{2}}}$
Hence the value of $\dfrac{p\sin \theta -q\cos \theta }{p\sin \theta +q\cos \theta }$ is $\dfrac{{{p}^{2}}-{{q}^{2}}}{{{p}^{2}}+{{q}^{2}}}$
Note: Alternative Solution: Best Method
We can solve the above question using componendo-dividendo which states that if $\dfrac{a}{b}=\dfrac{c}{d}$, then $\dfrac{a-b}{a+b}=\dfrac{c-d}{c+d}$
We know that $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$
Hence, we have
$\dfrac{\sin \theta }{\cos \theta }=\dfrac{p}{q}$
Multiplying both sides by $\dfrac{p}{q}$, we get
$\dfrac{p\sin \theta }{q\cos \theta }=\dfrac{{{p}^{2}}}{{{q}^{2}}}$
Applying componendo-dividendo, we get
$\dfrac{p\sin \theta -q\cos \theta }{p\sin \theta +q\cos \theta }=\dfrac{{{p}^{2}}-{{q}^{2}}}{{{p}^{2}}+{{q}^{2}}}$, which is the same as obtained above
[2] Alternative Solution:
Dividing numerator and denominator of the expression $\dfrac{p\sin \theta -q\cos \theta }{p\sin \theta +q\cos \theta }$ by $\cos \theta $, we get
$\dfrac{p\sin \theta -q\cos \theta }{p\sin \theta +q\cos \theta }=\dfrac{\dfrac{p\sin \theta -q\cos \theta }{\cos \theta }}{\dfrac{p\sin \theta +q\cos \theta }{\cos \theta }}$
We know that $\dfrac{a\pm b}{c}=\dfrac{a}{c}\pm \dfrac{b}{c}$
Using the above identity, we get
$\dfrac{p\sin \theta -q\cos \theta }{p\sin \theta +q\cos \theta }=\dfrac{p\dfrac{\sin \theta }{\cos \theta }-q}{p\dfrac{\sin \theta }{\cos \theta }+q}$
We know that $\tan \theta =\dfrac{p}{q}$
Hence, we have
$\dfrac{p\sin \theta -q\cos \theta }{p\sin \theta +q\cos \theta }=\dfrac{p\left( \dfrac{p}{q} \right)-q}{p\left( \dfrac{p}{q} \right)+q}$
Multiplying numerator and denominator of RHS by q, we get
$\dfrac{p\sin \theta -q\cos \theta }{p\sin \theta +q\cos \theta }=\dfrac{{{p}^{2}}-{{q}^{2}}}{{{p}^{2}}+{{q}^{2}}}$, which is the same as obtained above.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

