
If $ \tan \theta =\dfrac{a-b}{a+b} $ , then find $ \sin \theta $ in terms of $ a $ and $ b $ . \[\]
Answer
567.6k+ views
Hint: W recall the definition of sine and tangent trigonometric ratios from right triangle ABC. We assume the length of opposite side to the angle $ \theta $ as $ p=a-b $ and length of adjacent side as $ b=a+b $ and then use Pythagoras theorem to find the hypotenuse $ h $ . We find $ \sin \theta =\dfrac{p}{h} $ .\[\]
Complete step by step answer:
We know that in right-angled triangle the side opposite to right-angled triangle is called hypotenuse denoted as $ AC=h $, the vertical side is called perpendicular denoted as $ AB=p $ and the horizontal side is called the base denoted as $ BC=b $ . \[\]
We know from the trigonometric ratios in a right angled triangle the sine of any angle is given by the ratio of side opposite to the angle to the hypotenuse. In the figure the sine of the angle $ \theta $ is given by
\[\sin \theta =\dfrac{AB}{AC}=\dfrac{p}{h}\]
The tangent of the angle is the ratio of opposite side to the adjacent side (excluding hypotenuse) . So we have tangent of the angle of angle $ \theta $
\[\tan \theta =\dfrac{AB}{AC}=\dfrac{p}{b}\]
We are given in the question
\[\tan \theta =\dfrac{a-b}{a+b}\]
Let us assign $ p=a-b,b=a+b $ .We know from Pythagoras theorem that in a right-angled triangle the square of hypotenuse is sum of squares of other two sides which means
\[\begin{align}
& {{p}^{2}}+{{b}^{2}}={{h}^{2}} \\
& \Rightarrow {{\left( a-b \right)}^{2}}+{{\left( a+b \right)}^{2}}={{h}^{2}} \\
& \Rightarrow 2\left( {{a}^{2}}+{{b}^{2}} \right)={{h}^{2}} \\
\end{align}\]
We take square root both sides to have;
\[\Rightarrow h=\sqrt{2\left( {{a}^{2}}+{{b}^{2}} \right)}\]
So the ratio sine can be expressed as;
\[\begin{align}
& \sin \theta =\dfrac{p}{h} \\
& \Rightarrow \sin \theta =\dfrac{a-b}{\sqrt{2\left( {{a}^{2}}+{{b}^{2}} \right)}} \\
\end{align}\]
Note:
We note that since $ \tan \theta $ is well-defined in the question $ a+b\ne 0 $ and hence $ {{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\ne 0 $ . Then our obtained value $ \sin \theta =\dfrac{a-b}{\sqrt{2\left( {{a}^{2}}+{{b}^{2}} \right)}} $ is well defined because $ {{a}^{2}}\ge 0,{{b}^{2}}\ge 0 $ . We must be careful of the confusion between algebraic identities $ {{\left( a+b \right)}^{2}}+{{\left( a-b \right)}^{2}}=2\left( {{a}^{2}}+{{b}^{2}} \right) $ and $ {{\left( a+b \right)}^{2}}-{{\left( a-b \right)}^{2}}=4ab $ . We can alternatively solve we know the Pythagorean trigonometric identity $ {{\sec }^{2}}\theta =1+{{\tan }^{2}}\theta $ to have
\[\begin{align}
& \sec \theta =\sqrt{1+{{\left( \dfrac{a-b}{a+b} \right)}^{2}}} \\
& \Rightarrow \sec \theta =\sqrt{\dfrac{{{\left( a+b \right)}^{2}}+{{\left( a-b \right)}^{2}}}{{{\left( a+b \right)}^{2}}}} \\
& \Rightarrow \sec \theta =\sqrt{\dfrac{2\left( {{a}^{2}}+{{b}^{2}} \right)}{{{\left( a+b \right)}^{2}}}} \\
& \Rightarrow \sec \theta =\dfrac{\sqrt{2\left( {{a}^{2}}+{{b}^{2}} \right)}}{\left( a+b \right)} \\
\end{align}\]
We use reciprocal relationship between secant and cosine that is $ \cos \theta =\dfrac{1}{\sec \theta } $ to have;
\[\begin{align}
& \cos \theta =\dfrac{1}{\sec \theta }=\dfrac{a+b}{\sqrt{2\left( {{a}^{2}}+{{b}^{2}} \right)}} \\
& \Rightarrow {{\cos }^{2}}\theta =\dfrac{{{\left( a+b \right)}^{2}}}{2\left( {{a}^{2}}+{{b}^{2}} \right)} \\
\end{align}\]
We use Pythagorean trigonometric identity $ {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 $ to find required $ \sin \theta $ as
\[\begin{align}
& \sin \theta =\sqrt{1-{{\cos }^{2}}\theta } \\
& \Rightarrow \sin \theta =\sqrt{1-\dfrac{{{\left( a+b \right)}^{2}}}{2\left( {{a}^{2}}+{{b}^{2}} \right)}} \\
& \Rightarrow \sin \theta =\sqrt{\dfrac{2\left( {{a}^{2}}+{{b}^{2}} \right)-{{\left( a+b \right)}^{2}}}{2\left( {{a}^{2}}+{{b}^{2}} \right)}} \\
\end{align}\]
We use the algebraic identity $ {{\left( a+b \right)}^{2}}+{{\left( a-b \right)}^{2}}=2\left( {{a}^{2}}+{{b}^{2}} \right) $ to have
\[\begin{align}
& \Rightarrow \sin \theta =\sqrt{\dfrac{{{\left( a-b \right)}^{2}}}{2\left( {{a}^{2}}+{{b}^{2}} \right)}} \\
& \Rightarrow \sin \theta =\dfrac{a-b}{\sqrt{2\left( {{a}^{2}}+{{b}^{2}} \right)}} \\
\end{align}\]
Complete step by step answer:
We know that in right-angled triangle the side opposite to right-angled triangle is called hypotenuse denoted as $ AC=h $, the vertical side is called perpendicular denoted as $ AB=p $ and the horizontal side is called the base denoted as $ BC=b $ . \[\]
We know from the trigonometric ratios in a right angled triangle the sine of any angle is given by the ratio of side opposite to the angle to the hypotenuse. In the figure the sine of the angle $ \theta $ is given by
\[\sin \theta =\dfrac{AB}{AC}=\dfrac{p}{h}\]
The tangent of the angle is the ratio of opposite side to the adjacent side (excluding hypotenuse) . So we have tangent of the angle of angle $ \theta $
\[\tan \theta =\dfrac{AB}{AC}=\dfrac{p}{b}\]
We are given in the question
\[\tan \theta =\dfrac{a-b}{a+b}\]
Let us assign $ p=a-b,b=a+b $ .We know from Pythagoras theorem that in a right-angled triangle the square of hypotenuse is sum of squares of other two sides which means
\[\begin{align}
& {{p}^{2}}+{{b}^{2}}={{h}^{2}} \\
& \Rightarrow {{\left( a-b \right)}^{2}}+{{\left( a+b \right)}^{2}}={{h}^{2}} \\
& \Rightarrow 2\left( {{a}^{2}}+{{b}^{2}} \right)={{h}^{2}} \\
\end{align}\]
We take square root both sides to have;
\[\Rightarrow h=\sqrt{2\left( {{a}^{2}}+{{b}^{2}} \right)}\]
So the ratio sine can be expressed as;
\[\begin{align}
& \sin \theta =\dfrac{p}{h} \\
& \Rightarrow \sin \theta =\dfrac{a-b}{\sqrt{2\left( {{a}^{2}}+{{b}^{2}} \right)}} \\
\end{align}\]
Note:
We note that since $ \tan \theta $ is well-defined in the question $ a+b\ne 0 $ and hence $ {{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\ne 0 $ . Then our obtained value $ \sin \theta =\dfrac{a-b}{\sqrt{2\left( {{a}^{2}}+{{b}^{2}} \right)}} $ is well defined because $ {{a}^{2}}\ge 0,{{b}^{2}}\ge 0 $ . We must be careful of the confusion between algebraic identities $ {{\left( a+b \right)}^{2}}+{{\left( a-b \right)}^{2}}=2\left( {{a}^{2}}+{{b}^{2}} \right) $ and $ {{\left( a+b \right)}^{2}}-{{\left( a-b \right)}^{2}}=4ab $ . We can alternatively solve we know the Pythagorean trigonometric identity $ {{\sec }^{2}}\theta =1+{{\tan }^{2}}\theta $ to have
\[\begin{align}
& \sec \theta =\sqrt{1+{{\left( \dfrac{a-b}{a+b} \right)}^{2}}} \\
& \Rightarrow \sec \theta =\sqrt{\dfrac{{{\left( a+b \right)}^{2}}+{{\left( a-b \right)}^{2}}}{{{\left( a+b \right)}^{2}}}} \\
& \Rightarrow \sec \theta =\sqrt{\dfrac{2\left( {{a}^{2}}+{{b}^{2}} \right)}{{{\left( a+b \right)}^{2}}}} \\
& \Rightarrow \sec \theta =\dfrac{\sqrt{2\left( {{a}^{2}}+{{b}^{2}} \right)}}{\left( a+b \right)} \\
\end{align}\]
We use reciprocal relationship between secant and cosine that is $ \cos \theta =\dfrac{1}{\sec \theta } $ to have;
\[\begin{align}
& \cos \theta =\dfrac{1}{\sec \theta }=\dfrac{a+b}{\sqrt{2\left( {{a}^{2}}+{{b}^{2}} \right)}} \\
& \Rightarrow {{\cos }^{2}}\theta =\dfrac{{{\left( a+b \right)}^{2}}}{2\left( {{a}^{2}}+{{b}^{2}} \right)} \\
\end{align}\]
We use Pythagorean trigonometric identity $ {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 $ to find required $ \sin \theta $ as
\[\begin{align}
& \sin \theta =\sqrt{1-{{\cos }^{2}}\theta } \\
& \Rightarrow \sin \theta =\sqrt{1-\dfrac{{{\left( a+b \right)}^{2}}}{2\left( {{a}^{2}}+{{b}^{2}} \right)}} \\
& \Rightarrow \sin \theta =\sqrt{\dfrac{2\left( {{a}^{2}}+{{b}^{2}} \right)-{{\left( a+b \right)}^{2}}}{2\left( {{a}^{2}}+{{b}^{2}} \right)}} \\
\end{align}\]
We use the algebraic identity $ {{\left( a+b \right)}^{2}}+{{\left( a-b \right)}^{2}}=2\left( {{a}^{2}}+{{b}^{2}} \right) $ to have
\[\begin{align}
& \Rightarrow \sin \theta =\sqrt{\dfrac{{{\left( a-b \right)}^{2}}}{2\left( {{a}^{2}}+{{b}^{2}} \right)}} \\
& \Rightarrow \sin \theta =\dfrac{a-b}{\sqrt{2\left( {{a}^{2}}+{{b}^{2}} \right)}} \\
\end{align}\]
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

