
If $ \tan \theta =\dfrac{a-b}{a+b} $ , then find $ \sin \theta $ in terms of $ a $ and $ b $ . \[\]
Answer
506.7k+ views
Hint: W recall the definition of sine and tangent trigonometric ratios from right triangle ABC. We assume the length of opposite side to the angle $ \theta $ as $ p=a-b $ and length of adjacent side as $ b=a+b $ and then use Pythagoras theorem to find the hypotenuse $ h $ . We find $ \sin \theta =\dfrac{p}{h} $ .\[\]
Complete step by step answer:
We know that in right-angled triangle the side opposite to right-angled triangle is called hypotenuse denoted as $ AC=h $, the vertical side is called perpendicular denoted as $ AB=p $ and the horizontal side is called the base denoted as $ BC=b $ . \[\]
We know from the trigonometric ratios in a right angled triangle the sine of any angle is given by the ratio of side opposite to the angle to the hypotenuse. In the figure the sine of the angle $ \theta $ is given by
\[\sin \theta =\dfrac{AB}{AC}=\dfrac{p}{h}\]
The tangent of the angle is the ratio of opposite side to the adjacent side (excluding hypotenuse) . So we have tangent of the angle of angle $ \theta $
\[\tan \theta =\dfrac{AB}{AC}=\dfrac{p}{b}\]
We are given in the question
\[\tan \theta =\dfrac{a-b}{a+b}\]
Let us assign $ p=a-b,b=a+b $ .We know from Pythagoras theorem that in a right-angled triangle the square of hypotenuse is sum of squares of other two sides which means
\[\begin{align}
& {{p}^{2}}+{{b}^{2}}={{h}^{2}} \\
& \Rightarrow {{\left( a-b \right)}^{2}}+{{\left( a+b \right)}^{2}}={{h}^{2}} \\
& \Rightarrow 2\left( {{a}^{2}}+{{b}^{2}} \right)={{h}^{2}} \\
\end{align}\]
We take square root both sides to have;
\[\Rightarrow h=\sqrt{2\left( {{a}^{2}}+{{b}^{2}} \right)}\]
So the ratio sine can be expressed as;
\[\begin{align}
& \sin \theta =\dfrac{p}{h} \\
& \Rightarrow \sin \theta =\dfrac{a-b}{\sqrt{2\left( {{a}^{2}}+{{b}^{2}} \right)}} \\
\end{align}\]
Note:
We note that since $ \tan \theta $ is well-defined in the question $ a+b\ne 0 $ and hence $ {{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\ne 0 $ . Then our obtained value $ \sin \theta =\dfrac{a-b}{\sqrt{2\left( {{a}^{2}}+{{b}^{2}} \right)}} $ is well defined because $ {{a}^{2}}\ge 0,{{b}^{2}}\ge 0 $ . We must be careful of the confusion between algebraic identities $ {{\left( a+b \right)}^{2}}+{{\left( a-b \right)}^{2}}=2\left( {{a}^{2}}+{{b}^{2}} \right) $ and $ {{\left( a+b \right)}^{2}}-{{\left( a-b \right)}^{2}}=4ab $ . We can alternatively solve we know the Pythagorean trigonometric identity $ {{\sec }^{2}}\theta =1+{{\tan }^{2}}\theta $ to have
\[\begin{align}
& \sec \theta =\sqrt{1+{{\left( \dfrac{a-b}{a+b} \right)}^{2}}} \\
& \Rightarrow \sec \theta =\sqrt{\dfrac{{{\left( a+b \right)}^{2}}+{{\left( a-b \right)}^{2}}}{{{\left( a+b \right)}^{2}}}} \\
& \Rightarrow \sec \theta =\sqrt{\dfrac{2\left( {{a}^{2}}+{{b}^{2}} \right)}{{{\left( a+b \right)}^{2}}}} \\
& \Rightarrow \sec \theta =\dfrac{\sqrt{2\left( {{a}^{2}}+{{b}^{2}} \right)}}{\left( a+b \right)} \\
\end{align}\]
We use reciprocal relationship between secant and cosine that is $ \cos \theta =\dfrac{1}{\sec \theta } $ to have;
\[\begin{align}
& \cos \theta =\dfrac{1}{\sec \theta }=\dfrac{a+b}{\sqrt{2\left( {{a}^{2}}+{{b}^{2}} \right)}} \\
& \Rightarrow {{\cos }^{2}}\theta =\dfrac{{{\left( a+b \right)}^{2}}}{2\left( {{a}^{2}}+{{b}^{2}} \right)} \\
\end{align}\]
We use Pythagorean trigonometric identity $ {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 $ to find required $ \sin \theta $ as
\[\begin{align}
& \sin \theta =\sqrt{1-{{\cos }^{2}}\theta } \\
& \Rightarrow \sin \theta =\sqrt{1-\dfrac{{{\left( a+b \right)}^{2}}}{2\left( {{a}^{2}}+{{b}^{2}} \right)}} \\
& \Rightarrow \sin \theta =\sqrt{\dfrac{2\left( {{a}^{2}}+{{b}^{2}} \right)-{{\left( a+b \right)}^{2}}}{2\left( {{a}^{2}}+{{b}^{2}} \right)}} \\
\end{align}\]
We use the algebraic identity $ {{\left( a+b \right)}^{2}}+{{\left( a-b \right)}^{2}}=2\left( {{a}^{2}}+{{b}^{2}} \right) $ to have
\[\begin{align}
& \Rightarrow \sin \theta =\sqrt{\dfrac{{{\left( a-b \right)}^{2}}}{2\left( {{a}^{2}}+{{b}^{2}} \right)}} \\
& \Rightarrow \sin \theta =\dfrac{a-b}{\sqrt{2\left( {{a}^{2}}+{{b}^{2}} \right)}} \\
\end{align}\]
Complete step by step answer:
We know that in right-angled triangle the side opposite to right-angled triangle is called hypotenuse denoted as $ AC=h $, the vertical side is called perpendicular denoted as $ AB=p $ and the horizontal side is called the base denoted as $ BC=b $ . \[\]
We know from the trigonometric ratios in a right angled triangle the sine of any angle is given by the ratio of side opposite to the angle to the hypotenuse. In the figure the sine of the angle $ \theta $ is given by
\[\sin \theta =\dfrac{AB}{AC}=\dfrac{p}{h}\]
The tangent of the angle is the ratio of opposite side to the adjacent side (excluding hypotenuse) . So we have tangent of the angle of angle $ \theta $
\[\tan \theta =\dfrac{AB}{AC}=\dfrac{p}{b}\]
We are given in the question
\[\tan \theta =\dfrac{a-b}{a+b}\]
Let us assign $ p=a-b,b=a+b $ .We know from Pythagoras theorem that in a right-angled triangle the square of hypotenuse is sum of squares of other two sides which means
\[\begin{align}
& {{p}^{2}}+{{b}^{2}}={{h}^{2}} \\
& \Rightarrow {{\left( a-b \right)}^{2}}+{{\left( a+b \right)}^{2}}={{h}^{2}} \\
& \Rightarrow 2\left( {{a}^{2}}+{{b}^{2}} \right)={{h}^{2}} \\
\end{align}\]
We take square root both sides to have;
\[\Rightarrow h=\sqrt{2\left( {{a}^{2}}+{{b}^{2}} \right)}\]
So the ratio sine can be expressed as;
\[\begin{align}
& \sin \theta =\dfrac{p}{h} \\
& \Rightarrow \sin \theta =\dfrac{a-b}{\sqrt{2\left( {{a}^{2}}+{{b}^{2}} \right)}} \\
\end{align}\]
Note:
We note that since $ \tan \theta $ is well-defined in the question $ a+b\ne 0 $ and hence $ {{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\ne 0 $ . Then our obtained value $ \sin \theta =\dfrac{a-b}{\sqrt{2\left( {{a}^{2}}+{{b}^{2}} \right)}} $ is well defined because $ {{a}^{2}}\ge 0,{{b}^{2}}\ge 0 $ . We must be careful of the confusion between algebraic identities $ {{\left( a+b \right)}^{2}}+{{\left( a-b \right)}^{2}}=2\left( {{a}^{2}}+{{b}^{2}} \right) $ and $ {{\left( a+b \right)}^{2}}-{{\left( a-b \right)}^{2}}=4ab $ . We can alternatively solve we know the Pythagorean trigonometric identity $ {{\sec }^{2}}\theta =1+{{\tan }^{2}}\theta $ to have
\[\begin{align}
& \sec \theta =\sqrt{1+{{\left( \dfrac{a-b}{a+b} \right)}^{2}}} \\
& \Rightarrow \sec \theta =\sqrt{\dfrac{{{\left( a+b \right)}^{2}}+{{\left( a-b \right)}^{2}}}{{{\left( a+b \right)}^{2}}}} \\
& \Rightarrow \sec \theta =\sqrt{\dfrac{2\left( {{a}^{2}}+{{b}^{2}} \right)}{{{\left( a+b \right)}^{2}}}} \\
& \Rightarrow \sec \theta =\dfrac{\sqrt{2\left( {{a}^{2}}+{{b}^{2}} \right)}}{\left( a+b \right)} \\
\end{align}\]
We use reciprocal relationship between secant and cosine that is $ \cos \theta =\dfrac{1}{\sec \theta } $ to have;
\[\begin{align}
& \cos \theta =\dfrac{1}{\sec \theta }=\dfrac{a+b}{\sqrt{2\left( {{a}^{2}}+{{b}^{2}} \right)}} \\
& \Rightarrow {{\cos }^{2}}\theta =\dfrac{{{\left( a+b \right)}^{2}}}{2\left( {{a}^{2}}+{{b}^{2}} \right)} \\
\end{align}\]
We use Pythagorean trigonometric identity $ {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 $ to find required $ \sin \theta $ as
\[\begin{align}
& \sin \theta =\sqrt{1-{{\cos }^{2}}\theta } \\
& \Rightarrow \sin \theta =\sqrt{1-\dfrac{{{\left( a+b \right)}^{2}}}{2\left( {{a}^{2}}+{{b}^{2}} \right)}} \\
& \Rightarrow \sin \theta =\sqrt{\dfrac{2\left( {{a}^{2}}+{{b}^{2}} \right)-{{\left( a+b \right)}^{2}}}{2\left( {{a}^{2}}+{{b}^{2}} \right)}} \\
\end{align}\]
We use the algebraic identity $ {{\left( a+b \right)}^{2}}+{{\left( a-b \right)}^{2}}=2\left( {{a}^{2}}+{{b}^{2}} \right) $ to have
\[\begin{align}
& \Rightarrow \sin \theta =\sqrt{\dfrac{{{\left( a-b \right)}^{2}}}{2\left( {{a}^{2}}+{{b}^{2}} \right)}} \\
& \Rightarrow \sin \theta =\dfrac{a-b}{\sqrt{2\left( {{a}^{2}}+{{b}^{2}} \right)}} \\
\end{align}\]
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
Choose the feminine form of the given noun Fox AFoxess class 10 english CBSE

Give 10 examples of Material nouns Abstract nouns Common class 10 english CBSE

Why was Kamaraj called as Kingmaker class 10 social studies CBSE

Ladang is the name given to shifting cultivation in class 10 social science CBSE

Define Potential, Developed, Stock and Reserved resources

Identify the feminine form of the word Duke a Dukes class 10 english CBSE
