
If $\tan \theta = - \dfrac{5}{{12}}$ , $\theta $ is not in the second quadrant, then show that $\dfrac{{\sin \left( {360^\circ - \theta } \right) + \tan \left( {90^\circ + \theta } \right)}}{{ - \sec \left( {270 + \theta } \right) + \operatorname{cosec} \left( { - \theta } \right)}} = \dfrac{{181}}{{338}}$ .
Answer
562.5k+ views
Hint:
Here, the value of $\tan \theta $ is negative. So, $\theta $ must lie in the second or fourth quadrant. As it is given that $\theta $ does not lie in the second quadrant, it must lie in the fourth quadrant.
Then, find the values of $\sin \theta ,\cos \theta ,\operatorname{cosec} \theta ,\sec \theta $ and $\cot \theta $ , keeping in mind the quadrant of $\theta $ .
Finally, simplify $\dfrac{{\sin \left( {360^\circ - \theta } \right) + \tan \left( {90^\circ + \theta } \right)}}{{ - \sec \left( {270 + \theta } \right) + \operatorname{cosec} \left( { - \theta } \right)}}$ and put the values of $\sin \theta ,\cos \theta ,\operatorname{cosec} \theta ,\sec \theta $ and $\cot \theta $ .
Complete step by step solution:
It is given that, $\tan \theta = - \dfrac{5}{{12}}$ and $\theta $ is not in the second quadrant.
Here, the value of $\tan \theta $ is negative. So, $\theta $ must lie in the second or fourth quadrant. As it is given that $\theta $ does not lie in the second quadrant, it must lie in the fourth quadrant.
Now, using the right-angled triangle ABC, where $\angle B = 90^\circ $ , \[AB = 5\] and \[BC = 12\] , we will find the values of $\sin \theta $ and $\cos \theta $ .
From the above figure, $AC = \sqrt {A{B^2} + B{C^2}} $
$\therefore AC = \sqrt {{5^2} + {{12}^2}} $
$
= \sqrt {25 + 144} \\
= \sqrt {169} \\
$
=13
Now, $\sin \theta = \dfrac{{AB}}{{AC}}$ and $\cos \theta = \dfrac{{BC}}{{AC}}$ .
$\therefore \sin \theta = \dfrac{5}{{13}}$ and $\cos \theta = \dfrac{{12}}{{13}}$
But, $\theta $ lies in the fourth quadrant. So, $\sin \theta = - \dfrac{5}{{13}}$ and $\cos \theta = \dfrac{{12}}{{13}}$ , because in fourth quadrant, the values of sin and tan functions are negative.
Thus, $\sin \theta = - \dfrac{5}{{13}},\cos \theta = \dfrac{{12}}{{13}},\operatorname{cosec} \theta = - \dfrac{{13}}{5},\sec \theta = \dfrac{{13}}{{12}}$ and $\cot \theta = - \dfrac{{12}}{5}$ .
Now, L.H.S. $ = \dfrac{{\sin \left( {360^\circ - \theta } \right) + \tan \left( {90^\circ + \theta } \right)}}{{ - \sec \left( {270 + \theta } \right) + \operatorname{cosec} \left( { - \theta } \right)}}$
$ = \dfrac{{ - \sin \theta - \cot \theta }}{{ - \operatorname{cosec} \theta - \operatorname{cosec} \theta }}$
Substituting the values $\sin \theta = - \dfrac{5}{{13}},\cos \theta = \dfrac{{12}}{{13}},\operatorname{cosec} \theta = - \dfrac{{13}}{5},\sec \theta = \dfrac{{13}}{{12}}$ and $\cot \theta = - \dfrac{{12}}{5}$ , we get
L.H.S. \[ = \dfrac{{ - \left( { - \dfrac{5}{{13}}} \right) - \left( { - \dfrac{{12}}{5}} \right)}}{{ - \left( { - \dfrac{{13}}{5}} \right) - \left( { - \dfrac{{13}}{5}} \right)}}\]
\[
= \dfrac{{\dfrac{5}{{13}} + \dfrac{{12}}{5}}}{{\dfrac{{13}}{5} + \dfrac{{13}}{5}}} \\
= \dfrac{{\dfrac{{\left( {5 \times 5} \right) + \left( {12 \times 13} \right)}}{{13 \times 5}}}}{{2 \times \dfrac{{13}}{5}}} \\
= \dfrac{{25 + 156}}{{26 \times 13}} \\
= \dfrac{{181}}{{338}} \\
\]
= R.H.S.
Hence, proved L.H.S. = R.H.S.
Note:
Some properties of trigonometric functions used here:
$
\sin \theta \operatorname{cosec} \theta = 1 \\
\cos \theta \sec \theta = 1 \\
\tan \theta \cot \theta = 1 \\
\sin \left( {2\pi - \theta } \right) = - \sin \theta \\
\tan \left( {\dfrac{\pi }{2} + \theta } \right) = - \cot \theta \\
\sec \left( {\dfrac{{3\pi }}{2} + \theta } \right) = \operatorname{cosec} \theta \\
\operatorname{cosec} \left( { - \theta } \right) = \operatorname{cosec} \theta \\
$
Here, the value of $\tan \theta $ is negative. So, $\theta $ must lie in the second or fourth quadrant. As it is given that $\theta $ does not lie in the second quadrant, it must lie in the fourth quadrant.
Then, find the values of $\sin \theta ,\cos \theta ,\operatorname{cosec} \theta ,\sec \theta $ and $\cot \theta $ , keeping in mind the quadrant of $\theta $ .
Finally, simplify $\dfrac{{\sin \left( {360^\circ - \theta } \right) + \tan \left( {90^\circ + \theta } \right)}}{{ - \sec \left( {270 + \theta } \right) + \operatorname{cosec} \left( { - \theta } \right)}}$ and put the values of $\sin \theta ,\cos \theta ,\operatorname{cosec} \theta ,\sec \theta $ and $\cot \theta $ .
Complete step by step solution:
It is given that, $\tan \theta = - \dfrac{5}{{12}}$ and $\theta $ is not in the second quadrant.
Here, the value of $\tan \theta $ is negative. So, $\theta $ must lie in the second or fourth quadrant. As it is given that $\theta $ does not lie in the second quadrant, it must lie in the fourth quadrant.
Now, using the right-angled triangle ABC, where $\angle B = 90^\circ $ , \[AB = 5\] and \[BC = 12\] , we will find the values of $\sin \theta $ and $\cos \theta $ .
From the above figure, $AC = \sqrt {A{B^2} + B{C^2}} $
$\therefore AC = \sqrt {{5^2} + {{12}^2}} $
$
= \sqrt {25 + 144} \\
= \sqrt {169} \\
$
=13
Now, $\sin \theta = \dfrac{{AB}}{{AC}}$ and $\cos \theta = \dfrac{{BC}}{{AC}}$ .
$\therefore \sin \theta = \dfrac{5}{{13}}$ and $\cos \theta = \dfrac{{12}}{{13}}$
But, $\theta $ lies in the fourth quadrant. So, $\sin \theta = - \dfrac{5}{{13}}$ and $\cos \theta = \dfrac{{12}}{{13}}$ , because in fourth quadrant, the values of sin and tan functions are negative.
Thus, $\sin \theta = - \dfrac{5}{{13}},\cos \theta = \dfrac{{12}}{{13}},\operatorname{cosec} \theta = - \dfrac{{13}}{5},\sec \theta = \dfrac{{13}}{{12}}$ and $\cot \theta = - \dfrac{{12}}{5}$ .
Now, L.H.S. $ = \dfrac{{\sin \left( {360^\circ - \theta } \right) + \tan \left( {90^\circ + \theta } \right)}}{{ - \sec \left( {270 + \theta } \right) + \operatorname{cosec} \left( { - \theta } \right)}}$
$ = \dfrac{{ - \sin \theta - \cot \theta }}{{ - \operatorname{cosec} \theta - \operatorname{cosec} \theta }}$
Substituting the values $\sin \theta = - \dfrac{5}{{13}},\cos \theta = \dfrac{{12}}{{13}},\operatorname{cosec} \theta = - \dfrac{{13}}{5},\sec \theta = \dfrac{{13}}{{12}}$ and $\cot \theta = - \dfrac{{12}}{5}$ , we get
L.H.S. \[ = \dfrac{{ - \left( { - \dfrac{5}{{13}}} \right) - \left( { - \dfrac{{12}}{5}} \right)}}{{ - \left( { - \dfrac{{13}}{5}} \right) - \left( { - \dfrac{{13}}{5}} \right)}}\]
\[
= \dfrac{{\dfrac{5}{{13}} + \dfrac{{12}}{5}}}{{\dfrac{{13}}{5} + \dfrac{{13}}{5}}} \\
= \dfrac{{\dfrac{{\left( {5 \times 5} \right) + \left( {12 \times 13} \right)}}{{13 \times 5}}}}{{2 \times \dfrac{{13}}{5}}} \\
= \dfrac{{25 + 156}}{{26 \times 13}} \\
= \dfrac{{181}}{{338}} \\
\]
= R.H.S.
Hence, proved L.H.S. = R.H.S.
Note:
Some properties of trigonometric functions used here:
$
\sin \theta \operatorname{cosec} \theta = 1 \\
\cos \theta \sec \theta = 1 \\
\tan \theta \cot \theta = 1 \\
\sin \left( {2\pi - \theta } \right) = - \sin \theta \\
\tan \left( {\dfrac{\pi }{2} + \theta } \right) = - \cot \theta \\
\sec \left( {\dfrac{{3\pi }}{2} + \theta } \right) = \operatorname{cosec} \theta \\
\operatorname{cosec} \left( { - \theta } \right) = \operatorname{cosec} \theta \\
$
Recently Updated Pages
In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

In cricket, what is a "tail-ender"?

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Write an application to the principal requesting five class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Who Won 36 Oscar Awards? Record Holder Revealed

