
If $\tan \theta = - \dfrac{5}{{12}}$ , $\theta $ is not in the second quadrant, then show that $\dfrac{{\sin \left( {360^\circ - \theta } \right) + \tan \left( {90^\circ + \theta } \right)}}{{ - \sec \left( {270 + \theta } \right) + \operatorname{cosec} \left( { - \theta } \right)}} = \dfrac{{181}}{{338}}$ .
Answer
581.1k+ views
Hint:
Here, the value of $\tan \theta $ is negative. So, $\theta $ must lie in the second or fourth quadrant. As it is given that $\theta $ does not lie in the second quadrant, it must lie in the fourth quadrant.
Then, find the values of $\sin \theta ,\cos \theta ,\operatorname{cosec} \theta ,\sec \theta $ and $\cot \theta $ , keeping in mind the quadrant of $\theta $ .
Finally, simplify $\dfrac{{\sin \left( {360^\circ - \theta } \right) + \tan \left( {90^\circ + \theta } \right)}}{{ - \sec \left( {270 + \theta } \right) + \operatorname{cosec} \left( { - \theta } \right)}}$ and put the values of $\sin \theta ,\cos \theta ,\operatorname{cosec} \theta ,\sec \theta $ and $\cot \theta $ .
Complete step by step solution:
It is given that, $\tan \theta = - \dfrac{5}{{12}}$ and $\theta $ is not in the second quadrant.
Here, the value of $\tan \theta $ is negative. So, $\theta $ must lie in the second or fourth quadrant. As it is given that $\theta $ does not lie in the second quadrant, it must lie in the fourth quadrant.
Now, using the right-angled triangle ABC, where $\angle B = 90^\circ $ , \[AB = 5\] and \[BC = 12\] , we will find the values of $\sin \theta $ and $\cos \theta $ .
From the above figure, $AC = \sqrt {A{B^2} + B{C^2}} $
$\therefore AC = \sqrt {{5^2} + {{12}^2}} $
$
= \sqrt {25 + 144} \\
= \sqrt {169} \\
$
=13
Now, $\sin \theta = \dfrac{{AB}}{{AC}}$ and $\cos \theta = \dfrac{{BC}}{{AC}}$ .
$\therefore \sin \theta = \dfrac{5}{{13}}$ and $\cos \theta = \dfrac{{12}}{{13}}$
But, $\theta $ lies in the fourth quadrant. So, $\sin \theta = - \dfrac{5}{{13}}$ and $\cos \theta = \dfrac{{12}}{{13}}$ , because in fourth quadrant, the values of sin and tan functions are negative.
Thus, $\sin \theta = - \dfrac{5}{{13}},\cos \theta = \dfrac{{12}}{{13}},\operatorname{cosec} \theta = - \dfrac{{13}}{5},\sec \theta = \dfrac{{13}}{{12}}$ and $\cot \theta = - \dfrac{{12}}{5}$ .
Now, L.H.S. $ = \dfrac{{\sin \left( {360^\circ - \theta } \right) + \tan \left( {90^\circ + \theta } \right)}}{{ - \sec \left( {270 + \theta } \right) + \operatorname{cosec} \left( { - \theta } \right)}}$
$ = \dfrac{{ - \sin \theta - \cot \theta }}{{ - \operatorname{cosec} \theta - \operatorname{cosec} \theta }}$
Substituting the values $\sin \theta = - \dfrac{5}{{13}},\cos \theta = \dfrac{{12}}{{13}},\operatorname{cosec} \theta = - \dfrac{{13}}{5},\sec \theta = \dfrac{{13}}{{12}}$ and $\cot \theta = - \dfrac{{12}}{5}$ , we get
L.H.S. \[ = \dfrac{{ - \left( { - \dfrac{5}{{13}}} \right) - \left( { - \dfrac{{12}}{5}} \right)}}{{ - \left( { - \dfrac{{13}}{5}} \right) - \left( { - \dfrac{{13}}{5}} \right)}}\]
\[
= \dfrac{{\dfrac{5}{{13}} + \dfrac{{12}}{5}}}{{\dfrac{{13}}{5} + \dfrac{{13}}{5}}} \\
= \dfrac{{\dfrac{{\left( {5 \times 5} \right) + \left( {12 \times 13} \right)}}{{13 \times 5}}}}{{2 \times \dfrac{{13}}{5}}} \\
= \dfrac{{25 + 156}}{{26 \times 13}} \\
= \dfrac{{181}}{{338}} \\
\]
= R.H.S.
Hence, proved L.H.S. = R.H.S.
Note:
Some properties of trigonometric functions used here:
$
\sin \theta \operatorname{cosec} \theta = 1 \\
\cos \theta \sec \theta = 1 \\
\tan \theta \cot \theta = 1 \\
\sin \left( {2\pi - \theta } \right) = - \sin \theta \\
\tan \left( {\dfrac{\pi }{2} + \theta } \right) = - \cot \theta \\
\sec \left( {\dfrac{{3\pi }}{2} + \theta } \right) = \operatorname{cosec} \theta \\
\operatorname{cosec} \left( { - \theta } \right) = \operatorname{cosec} \theta \\
$
Here, the value of $\tan \theta $ is negative. So, $\theta $ must lie in the second or fourth quadrant. As it is given that $\theta $ does not lie in the second quadrant, it must lie in the fourth quadrant.
Then, find the values of $\sin \theta ,\cos \theta ,\operatorname{cosec} \theta ,\sec \theta $ and $\cot \theta $ , keeping in mind the quadrant of $\theta $ .
Finally, simplify $\dfrac{{\sin \left( {360^\circ - \theta } \right) + \tan \left( {90^\circ + \theta } \right)}}{{ - \sec \left( {270 + \theta } \right) + \operatorname{cosec} \left( { - \theta } \right)}}$ and put the values of $\sin \theta ,\cos \theta ,\operatorname{cosec} \theta ,\sec \theta $ and $\cot \theta $ .
Complete step by step solution:
It is given that, $\tan \theta = - \dfrac{5}{{12}}$ and $\theta $ is not in the second quadrant.
Here, the value of $\tan \theta $ is negative. So, $\theta $ must lie in the second or fourth quadrant. As it is given that $\theta $ does not lie in the second quadrant, it must lie in the fourth quadrant.
Now, using the right-angled triangle ABC, where $\angle B = 90^\circ $ , \[AB = 5\] and \[BC = 12\] , we will find the values of $\sin \theta $ and $\cos \theta $ .
From the above figure, $AC = \sqrt {A{B^2} + B{C^2}} $
$\therefore AC = \sqrt {{5^2} + {{12}^2}} $
$
= \sqrt {25 + 144} \\
= \sqrt {169} \\
$
=13
Now, $\sin \theta = \dfrac{{AB}}{{AC}}$ and $\cos \theta = \dfrac{{BC}}{{AC}}$ .
$\therefore \sin \theta = \dfrac{5}{{13}}$ and $\cos \theta = \dfrac{{12}}{{13}}$
But, $\theta $ lies in the fourth quadrant. So, $\sin \theta = - \dfrac{5}{{13}}$ and $\cos \theta = \dfrac{{12}}{{13}}$ , because in fourth quadrant, the values of sin and tan functions are negative.
Thus, $\sin \theta = - \dfrac{5}{{13}},\cos \theta = \dfrac{{12}}{{13}},\operatorname{cosec} \theta = - \dfrac{{13}}{5},\sec \theta = \dfrac{{13}}{{12}}$ and $\cot \theta = - \dfrac{{12}}{5}$ .
Now, L.H.S. $ = \dfrac{{\sin \left( {360^\circ - \theta } \right) + \tan \left( {90^\circ + \theta } \right)}}{{ - \sec \left( {270 + \theta } \right) + \operatorname{cosec} \left( { - \theta } \right)}}$
$ = \dfrac{{ - \sin \theta - \cot \theta }}{{ - \operatorname{cosec} \theta - \operatorname{cosec} \theta }}$
Substituting the values $\sin \theta = - \dfrac{5}{{13}},\cos \theta = \dfrac{{12}}{{13}},\operatorname{cosec} \theta = - \dfrac{{13}}{5},\sec \theta = \dfrac{{13}}{{12}}$ and $\cot \theta = - \dfrac{{12}}{5}$ , we get
L.H.S. \[ = \dfrac{{ - \left( { - \dfrac{5}{{13}}} \right) - \left( { - \dfrac{{12}}{5}} \right)}}{{ - \left( { - \dfrac{{13}}{5}} \right) - \left( { - \dfrac{{13}}{5}} \right)}}\]
\[
= \dfrac{{\dfrac{5}{{13}} + \dfrac{{12}}{5}}}{{\dfrac{{13}}{5} + \dfrac{{13}}{5}}} \\
= \dfrac{{\dfrac{{\left( {5 \times 5} \right) + \left( {12 \times 13} \right)}}{{13 \times 5}}}}{{2 \times \dfrac{{13}}{5}}} \\
= \dfrac{{25 + 156}}{{26 \times 13}} \\
= \dfrac{{181}}{{338}} \\
\]
= R.H.S.
Hence, proved L.H.S. = R.H.S.
Note:
Some properties of trigonometric functions used here:
$
\sin \theta \operatorname{cosec} \theta = 1 \\
\cos \theta \sec \theta = 1 \\
\tan \theta \cot \theta = 1 \\
\sin \left( {2\pi - \theta } \right) = - \sin \theta \\
\tan \left( {\dfrac{\pi }{2} + \theta } \right) = - \cot \theta \\
\sec \left( {\dfrac{{3\pi }}{2} + \theta } \right) = \operatorname{cosec} \theta \\
\operatorname{cosec} \left( { - \theta } \right) = \operatorname{cosec} \theta \\
$
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

