
If $\tan \theta =\dfrac{11}{2}$ where $\theta \in \left( 0,\dfrac{\pi }{2} \right)$. Find the value of \[\sin \dfrac{\theta }{3}\] and $\cos \dfrac{\theta }{3}$.
Answer
584.7k+ views
Hint: We start solving this problem by substituting the given value of $\tan \theta =\dfrac{11}{2}$ in the formula $\tan 3A=\dfrac{3\tan A-{{\tan }^{3}}A}{1-3{{\tan }^{2}}A}$ and find an equation in terms of $\tan \dfrac{\theta }{3}$. Then we assume that \[\tan \dfrac{\theta }{3}=x\] and then find the roots of the equation by trial and error method. Then we find the range of $\tan \dfrac{\theta }{3}$ from the information, $\theta \in \left( 0,\dfrac{\pi }{2} \right)$ and find which of the obtained values lie in that range. Then we find the values of \[\sin \dfrac{\theta }{3}\] and $\cos \dfrac{\theta }{3}$, using the trigonometric identities ${{\sin }^{2}}\theta \text{+}{{\cos }^{2}}\theta =1$ and ${{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1$.
Complete step by step answer:
We are given that $\tan \theta =\dfrac{11}{2}$ and that $\theta \in \left( 0,\dfrac{\pi }{2} \right)$.
We need to find the value of \[\sin \dfrac{\theta }{3}\] and $\cos \dfrac{\theta }{3}$.
First let us find the value of \[\tan \dfrac{\theta }{3}\].
Now let us consider the formula for $\tan 3A$.
$\tan 3A=\dfrac{3\tan A-{{\tan }^{3}}A}{1-3{{\tan }^{2}}A}$
Using this formula, we can write $\tan \theta $ in terms of \[\tan \dfrac{\theta }{3}\] as,
$\Rightarrow \tan 3\theta =\dfrac{3\tan \dfrac{\theta }{3}-{{\tan }^{3}}\dfrac{\theta }{3}}{1-3{{\tan }^{2}}\dfrac{\theta }{3}}$
Substituting the value of $\tan \theta =\dfrac{11}{2}$ in it we get,
$\begin{align}
& \Rightarrow \dfrac{11}{2}=\dfrac{3\tan \dfrac{\theta }{3}-{{\tan }^{3}}\dfrac{\theta }{3}}{1-3{{\tan }^{2}}\dfrac{\theta }{3}} \\
& \Rightarrow 11\left( 1-3{{\tan }^{2}}\dfrac{\theta }{3} \right)=2\left( 3\tan \dfrac{\theta }{3}-{{\tan }^{3}}\dfrac{\theta }{3} \right) \\
\end{align}$
$\begin{align}
& \Rightarrow 11-33{{\tan }^{2}}\dfrac{\theta }{3}=6\tan \dfrac{\theta }{3}-2{{\tan }^{3}}\dfrac{\theta }{3} \\
& \Rightarrow 2{{\tan }^{3}}\dfrac{\theta }{3}-33{{\tan }^{2}}\dfrac{\theta }{3}-6\tan \dfrac{\theta }{3}+11=0 \\
\end{align}$
Now let us assume that \[\tan \dfrac{\theta }{3}=x\]. Then above equation can be converted as,
$\Rightarrow 2{{x}^{3}}-33{{x}^{2}}-6x+11=0$
Now let us find the roots of above equation by trial and error method.
Let us check whether $x=\dfrac{1}{2}$ is a root of the equation.
$x=\dfrac{1}{2}\Rightarrow 2x-1=0$
Now let us divide $2{{x}^{3}}-33{{x}^{2}}-6x+11=0$ with $2x-1$.
$2x-1\overset{{{x}^{2}}-16x-11}{\overline{\left){\begin{align}
& 2{{x}^{3}}-33{{x}^{2}}-6x+11 \\
& \underline{2{{x}^{3}}-{{x}^{2}}\text{ }} \\
& \text{ }-32{{x}^{2}}-6x \\
& \text{ }\underline{-32{{x}^{2}}+16x\text{ }} \\
& \text{ }-22x+11 \\
& \text{ }\underline{-22x+11} \\
& \text{ 0} \\
\end{align}}\right.}}$
So, we can write $2{{x}^{3}}-33{{x}^{2}}-6x+11=0$ as,
$\Rightarrow 2{{x}^{3}}-33{{x}^{2}}-6x+11=\left( 2x-1 \right)\left( {{x}^{2}}-16x-11 \right)$
So, one root of the above equation is $x=\dfrac{1}{2}$.
Now let us find the root of the equation ${{x}^{2}}-16x-11=0$.
Now let us consider the formula for roots of the equation, $a{{x}^{2}}+bx+c=0$.
$x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
So, the roots of equation ${{x}^{2}}-16x-11=0$ are,
$\begin{align}
& \Rightarrow x=\dfrac{16\pm \sqrt{{{\left( 16 \right)}^{2}}-4\left( 1 \right)\left( -11 \right)}}{2} \\
& \Rightarrow x=\dfrac{16\pm \sqrt{256+44}}{2} \\
\end{align}$
$\begin{align}
& \Rightarrow x=\dfrac{16\pm \sqrt{300}}{2} \\
& \Rightarrow x=\dfrac{16\pm 10\sqrt{3}}{2} \\
& \Rightarrow x=8\pm 5\sqrt{3} \\
\end{align}$
So, the roots of equation $2{{x}^{3}}-33{{x}^{2}}-6x+11=0$ are,
$x=\dfrac{1}{2},8+5\sqrt{3},8-5\sqrt{3}$
As we have assumed that \[\tan \dfrac{\theta }{3}=x\], we get that the values of \[\tan \dfrac{\theta }{3}\] as,
\[\tan \dfrac{\theta }{3}=\dfrac{1}{2},8+5\sqrt{3},8-5\sqrt{3}...........\left( 1 \right)\]
We are given that $\theta \in \left( 0,\dfrac{\pi }{2} \right)$. Then $\dfrac{\theta }{3}\in \left( 0,\dfrac{\pi }{6} \right)$.
As $\tan \theta $ is increasing in the interval $\theta \in \left( 0,\dfrac{\pi }{2} \right)$, when $\dfrac{\theta }{3}\in \left( 0,\dfrac{\pi }{6} \right)$ then,
$\begin{align}
& \Rightarrow \tan \dfrac{\theta }{3}\in \left( 0,\tan \dfrac{\pi }{6} \right) \\
& \Rightarrow \tan \dfrac{\theta }{3}\in \left( 0,\dfrac{1}{\sqrt{3}} \right) \\
\end{align}$
Comparing the values in equation (1) with the above range of $\tan \dfrac{\theta }{3}$, we get the value of $\tan \dfrac{\theta }{3}$ as,
$\Rightarrow \tan \dfrac{\theta }{3}=\dfrac{1}{2}$
Now let us consider the trigonometric identity,
${{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1$
Applying this identity, we get
$\begin{align}
& \Rightarrow {{\sec }^{2}}\dfrac{\theta }{3}-{{\tan }^{2}}\dfrac{\theta }{3}=1 \\
& \Rightarrow {{\sec }^{2}}\dfrac{\theta }{3}-{{\left( \dfrac{1}{2} \right)}^{2}}=1 \\
& \Rightarrow {{\sec }^{2}}\dfrac{\theta }{3}-\dfrac{1}{4}=1 \\
\end{align}$
$\begin{align}
& \Rightarrow {{\sec }^{2}}\dfrac{\theta }{3}=1+\dfrac{1}{4} \\
& \Rightarrow {{\sec }^{2}}\dfrac{\theta }{3}=\dfrac{5}{4} \\
& \Rightarrow {{\cos }^{2}}\dfrac{\theta }{3}=\dfrac{4}{5} \\
& \Rightarrow \cos \dfrac{\theta }{3}=\pm \dfrac{2}{\sqrt{5}} \\
\end{align}$
As $\dfrac{\theta }{3}\in \left( 0,\dfrac{\pi }{6} \right)$, cosine of it must be positive. So, we get,
$\Rightarrow \cos \dfrac{\theta }{3}=\dfrac{2}{\sqrt{5}}........\left( 1 \right)$
Now let us consider the identity,
${{\sin }^{2}}\theta \text{+}{{\cos }^{2}}\theta =1$
Applying this identity, we get
$\begin{align}
& \Rightarrow {{\sin }^{2}}\dfrac{\theta }{3}+{{\cos }^{2}}\dfrac{\theta }{3}=1 \\
& \Rightarrow {{\sin }^{2}}\dfrac{\theta }{3}+{{\left( \dfrac{2}{\sqrt{5}} \right)}^{2}}=1 \\
& \Rightarrow {{\sin }^{2}}\dfrac{\theta }{3}+\dfrac{4}{5}=1 \\
\end{align}$
$\begin{align}
& \Rightarrow {{\sin }^{2}}\dfrac{\theta }{3}=1-\dfrac{4}{5} \\
& \Rightarrow {{\sin }^{2}}\dfrac{\theta }{3}=\dfrac{1}{5} \\
& \Rightarrow \sin \dfrac{\theta }{3}=\pm \dfrac{1}{\sqrt{5}} \\
\end{align}$
As $\dfrac{\theta }{3}\in \left( 0,\dfrac{\pi }{6} \right)$, sine of it must be positive. So, we get,
$\Rightarrow \sin \dfrac{\theta }{3}=\dfrac{1}{\sqrt{5}}........\left( 2 \right)$
From equations (1) and (2) we get the values of $\sin \dfrac{\theta }{3}$ and $\cos \dfrac{\theta }{3}$ as $\dfrac{1}{\sqrt{5}}$ and $\dfrac{2}{\sqrt{5}}$.
Hence answer is $\dfrac{1}{\sqrt{5}}$ and $\dfrac{2}{\sqrt{5}}$.
Note:
The common mistake one makes while solving this question is one might not check the range of $\tan \dfrac{\theta }{3}$ from the given range of $\theta \in \left( 0,\dfrac{\pi }{2} \right)$ and assume the values of $\tan \dfrac{\theta }{3}$ as, \[\tan \dfrac{\theta }{3}=\dfrac{1}{2},8+5\sqrt{3},8-5\sqrt{3}\] and find the values of $\sin \dfrac{\theta }{3}$ and $\cos \dfrac{\theta }{3}$ for each case.
Complete step by step answer:
We are given that $\tan \theta =\dfrac{11}{2}$ and that $\theta \in \left( 0,\dfrac{\pi }{2} \right)$.
We need to find the value of \[\sin \dfrac{\theta }{3}\] and $\cos \dfrac{\theta }{3}$.
First let us find the value of \[\tan \dfrac{\theta }{3}\].
Now let us consider the formula for $\tan 3A$.
$\tan 3A=\dfrac{3\tan A-{{\tan }^{3}}A}{1-3{{\tan }^{2}}A}$
Using this formula, we can write $\tan \theta $ in terms of \[\tan \dfrac{\theta }{3}\] as,
$\Rightarrow \tan 3\theta =\dfrac{3\tan \dfrac{\theta }{3}-{{\tan }^{3}}\dfrac{\theta }{3}}{1-3{{\tan }^{2}}\dfrac{\theta }{3}}$
Substituting the value of $\tan \theta =\dfrac{11}{2}$ in it we get,
$\begin{align}
& \Rightarrow \dfrac{11}{2}=\dfrac{3\tan \dfrac{\theta }{3}-{{\tan }^{3}}\dfrac{\theta }{3}}{1-3{{\tan }^{2}}\dfrac{\theta }{3}} \\
& \Rightarrow 11\left( 1-3{{\tan }^{2}}\dfrac{\theta }{3} \right)=2\left( 3\tan \dfrac{\theta }{3}-{{\tan }^{3}}\dfrac{\theta }{3} \right) \\
\end{align}$
$\begin{align}
& \Rightarrow 11-33{{\tan }^{2}}\dfrac{\theta }{3}=6\tan \dfrac{\theta }{3}-2{{\tan }^{3}}\dfrac{\theta }{3} \\
& \Rightarrow 2{{\tan }^{3}}\dfrac{\theta }{3}-33{{\tan }^{2}}\dfrac{\theta }{3}-6\tan \dfrac{\theta }{3}+11=0 \\
\end{align}$
Now let us assume that \[\tan \dfrac{\theta }{3}=x\]. Then above equation can be converted as,
$\Rightarrow 2{{x}^{3}}-33{{x}^{2}}-6x+11=0$
Now let us find the roots of above equation by trial and error method.
Let us check whether $x=\dfrac{1}{2}$ is a root of the equation.
$x=\dfrac{1}{2}\Rightarrow 2x-1=0$
Now let us divide $2{{x}^{3}}-33{{x}^{2}}-6x+11=0$ with $2x-1$.
$2x-1\overset{{{x}^{2}}-16x-11}{\overline{\left){\begin{align}
& 2{{x}^{3}}-33{{x}^{2}}-6x+11 \\
& \underline{2{{x}^{3}}-{{x}^{2}}\text{ }} \\
& \text{ }-32{{x}^{2}}-6x \\
& \text{ }\underline{-32{{x}^{2}}+16x\text{ }} \\
& \text{ }-22x+11 \\
& \text{ }\underline{-22x+11} \\
& \text{ 0} \\
\end{align}}\right.}}$
So, we can write $2{{x}^{3}}-33{{x}^{2}}-6x+11=0$ as,
$\Rightarrow 2{{x}^{3}}-33{{x}^{2}}-6x+11=\left( 2x-1 \right)\left( {{x}^{2}}-16x-11 \right)$
So, one root of the above equation is $x=\dfrac{1}{2}$.
Now let us find the root of the equation ${{x}^{2}}-16x-11=0$.
Now let us consider the formula for roots of the equation, $a{{x}^{2}}+bx+c=0$.
$x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
So, the roots of equation ${{x}^{2}}-16x-11=0$ are,
$\begin{align}
& \Rightarrow x=\dfrac{16\pm \sqrt{{{\left( 16 \right)}^{2}}-4\left( 1 \right)\left( -11 \right)}}{2} \\
& \Rightarrow x=\dfrac{16\pm \sqrt{256+44}}{2} \\
\end{align}$
$\begin{align}
& \Rightarrow x=\dfrac{16\pm \sqrt{300}}{2} \\
& \Rightarrow x=\dfrac{16\pm 10\sqrt{3}}{2} \\
& \Rightarrow x=8\pm 5\sqrt{3} \\
\end{align}$
So, the roots of equation $2{{x}^{3}}-33{{x}^{2}}-6x+11=0$ are,
$x=\dfrac{1}{2},8+5\sqrt{3},8-5\sqrt{3}$
As we have assumed that \[\tan \dfrac{\theta }{3}=x\], we get that the values of \[\tan \dfrac{\theta }{3}\] as,
\[\tan \dfrac{\theta }{3}=\dfrac{1}{2},8+5\sqrt{3},8-5\sqrt{3}...........\left( 1 \right)\]
We are given that $\theta \in \left( 0,\dfrac{\pi }{2} \right)$. Then $\dfrac{\theta }{3}\in \left( 0,\dfrac{\pi }{6} \right)$.
As $\tan \theta $ is increasing in the interval $\theta \in \left( 0,\dfrac{\pi }{2} \right)$, when $\dfrac{\theta }{3}\in \left( 0,\dfrac{\pi }{6} \right)$ then,
$\begin{align}
& \Rightarrow \tan \dfrac{\theta }{3}\in \left( 0,\tan \dfrac{\pi }{6} \right) \\
& \Rightarrow \tan \dfrac{\theta }{3}\in \left( 0,\dfrac{1}{\sqrt{3}} \right) \\
\end{align}$
Comparing the values in equation (1) with the above range of $\tan \dfrac{\theta }{3}$, we get the value of $\tan \dfrac{\theta }{3}$ as,
$\Rightarrow \tan \dfrac{\theta }{3}=\dfrac{1}{2}$
Now let us consider the trigonometric identity,
${{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1$
Applying this identity, we get
$\begin{align}
& \Rightarrow {{\sec }^{2}}\dfrac{\theta }{3}-{{\tan }^{2}}\dfrac{\theta }{3}=1 \\
& \Rightarrow {{\sec }^{2}}\dfrac{\theta }{3}-{{\left( \dfrac{1}{2} \right)}^{2}}=1 \\
& \Rightarrow {{\sec }^{2}}\dfrac{\theta }{3}-\dfrac{1}{4}=1 \\
\end{align}$
$\begin{align}
& \Rightarrow {{\sec }^{2}}\dfrac{\theta }{3}=1+\dfrac{1}{4} \\
& \Rightarrow {{\sec }^{2}}\dfrac{\theta }{3}=\dfrac{5}{4} \\
& \Rightarrow {{\cos }^{2}}\dfrac{\theta }{3}=\dfrac{4}{5} \\
& \Rightarrow \cos \dfrac{\theta }{3}=\pm \dfrac{2}{\sqrt{5}} \\
\end{align}$
As $\dfrac{\theta }{3}\in \left( 0,\dfrac{\pi }{6} \right)$, cosine of it must be positive. So, we get,
$\Rightarrow \cos \dfrac{\theta }{3}=\dfrac{2}{\sqrt{5}}........\left( 1 \right)$
Now let us consider the identity,
${{\sin }^{2}}\theta \text{+}{{\cos }^{2}}\theta =1$
Applying this identity, we get
$\begin{align}
& \Rightarrow {{\sin }^{2}}\dfrac{\theta }{3}+{{\cos }^{2}}\dfrac{\theta }{3}=1 \\
& \Rightarrow {{\sin }^{2}}\dfrac{\theta }{3}+{{\left( \dfrac{2}{\sqrt{5}} \right)}^{2}}=1 \\
& \Rightarrow {{\sin }^{2}}\dfrac{\theta }{3}+\dfrac{4}{5}=1 \\
\end{align}$
$\begin{align}
& \Rightarrow {{\sin }^{2}}\dfrac{\theta }{3}=1-\dfrac{4}{5} \\
& \Rightarrow {{\sin }^{2}}\dfrac{\theta }{3}=\dfrac{1}{5} \\
& \Rightarrow \sin \dfrac{\theta }{3}=\pm \dfrac{1}{\sqrt{5}} \\
\end{align}$
As $\dfrac{\theta }{3}\in \left( 0,\dfrac{\pi }{6} \right)$, sine of it must be positive. So, we get,
$\Rightarrow \sin \dfrac{\theta }{3}=\dfrac{1}{\sqrt{5}}........\left( 2 \right)$
From equations (1) and (2) we get the values of $\sin \dfrac{\theta }{3}$ and $\cos \dfrac{\theta }{3}$ as $\dfrac{1}{\sqrt{5}}$ and $\dfrac{2}{\sqrt{5}}$.
Hence answer is $\dfrac{1}{\sqrt{5}}$ and $\dfrac{2}{\sqrt{5}}$.
Note:
The common mistake one makes while solving this question is one might not check the range of $\tan \dfrac{\theta }{3}$ from the given range of $\theta \in \left( 0,\dfrac{\pi }{2} \right)$ and assume the values of $\tan \dfrac{\theta }{3}$ as, \[\tan \dfrac{\theta }{3}=\dfrac{1}{2},8+5\sqrt{3},8-5\sqrt{3}\] and find the values of $\sin \dfrac{\theta }{3}$ and $\cos \dfrac{\theta }{3}$ for each case.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

