
If $\tan \theta - \cot \theta = a$ and $\sin \theta + \cos \theta = b$, then ${\left( {{b^2} - 1} \right)^2}\left( {{a^2} + 1} \right)$ is equal to
A.$2$
B.$ - 4$
C.$ \pm 4$
D.$4$
Answer
512.4k+ views
Hint: In order to solve the equation ${\left( {{b^2} - 1} \right)^2}\left( {{a^2} + 1} \right)$, solve the two equations given separately to find the value of ${b^2}$ and ${a^2}$, or the simplest that can be found and then substitute that value in the main equation ${\left( {{b^2} - 1} \right)^2}\left( {{a^2} + 1} \right)$ solve the obtained equation and get the results. Trigonometric identities are the main part used in this process.
Formula used:
$\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$
$\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}$
$\left( {{{\cos }^2}\theta - {{\sin }^2}\theta } \right) = \cos 2\theta $
$2\sin \theta \cos \theta = \sin 2\theta $
${\sin ^2}\theta + {\cos ^2}\theta = 1$
Complete answer:
We are given two equations: $\tan \theta - \cot \theta = a$ and $\sin \theta + \cos \theta = b$.
Taking each equation separately and solving them to their simplest term.
Starting with $\tan \theta - \cot \theta = a$.
Writing the equation $\tan \theta - \cot \theta = a$ in terms of sine and cosine and we get:
$\dfrac{{\sin \theta }}{{\cos \theta }} - \dfrac{{\cos \theta }}{{\sin \theta }} = a$
Taking a common denominator by solving them:
$ \Rightarrow \dfrac{{{{\sin }^2}\theta - {{\cos }^2}\theta }}{{\cos \theta \sin \theta }} = a$
Taking negative sign out:
$ \Rightarrow \dfrac{{ - \left( {{{\cos }^2}\theta - {{\sin }^2}\theta } \right)}}{{\cos \theta \sin \theta }} = a$
Multiplying and dividing both the denominator and numerator by 2 on the left side:
$ \Rightarrow \dfrac{{ - 2\left( {{{\cos }^2}\theta - {{\sin }^2}\theta } \right)}}{{2\sin \theta \cos \theta }} = a$
From the trigonometric formulas we know that $\left( {{{\cos }^2}\theta - {{\sin }^2}\theta } \right) = \cos 2\theta $ and $2\sin \theta \cos \theta = \sin 2\theta $, so substituting this in the above equation, we get:
$ \Rightarrow \dfrac{{ - 2\cos 2\theta }}{{\sin 2\theta }} = a$
Squaring both the sides:
$ \Rightarrow \dfrac{{{{\left( { - 2\cos 2\theta } \right)}^2}}}{{{{\sin }^2}2\theta }} = {a^2}$
$ \Rightarrow \dfrac{{4{{\cos }^2}2\theta }}{{{{\sin }^2}2\theta }} = {a^2}$
Adding 4 both the sides:
$ \Rightarrow 4 + \dfrac{{4{{\cos }^2}2\theta }}{{{{\sin }^2}2\theta }} = {a^2} + 4$
Multiplying and dividing 4 by ${\sin ^2}2\theta $ on the left side:
$ \Rightarrow 4\dfrac{{{{\sin }^2}2\theta }}{{{{\sin }^2}2\theta }} + \dfrac{{4{{\cos }^2}2\theta }}{{{{\sin }^2}2\theta }} = {a^2} + 4$
Taking ${\sin ^2}2\theta $ common in the denominator and 4 in the numerator, we get:
\[ \Rightarrow \dfrac{{4\left( {{{\sin }^2}2\theta + {{\cos }^2}2\theta } \right)}}{{{{\sin }^2}2\theta }} = {a^2} + 4\]
Since, we know that \[\left( {{{\sin }^2}2\theta + {{\cos }^2}2\theta } \right) = 1\]:
\[ \Rightarrow \dfrac{{4 \times 1}}{{{{\sin }^2}2\theta }} = {a^2} + 4\]
\[ \Rightarrow \dfrac{4}{{{{\sin }^2}2\theta }} = {a^2} + 4\] ……………..(1)
For the second equation $\sin \theta + \cos \theta = b$:
Squaring both the sides:
${\left( {\sin \theta + \cos \theta } \right)^2} = {b^2}$
Expanding the terms on the left side using ${\left( {x + y} \right)^2} = {x^2} + {y^2} + 2xy$:
$ \Rightarrow {\sin ^2}\theta + {\cos ^2}\theta + 2\sin \theta \cos \theta = {b^2}$
Substituting the value ${\sin ^2}\theta + {\cos ^2}\theta = 1$ and $2\sin \theta \cos \theta = \sin 2\theta $, we get:
$ \Rightarrow 1 + \sin 2\theta = {b^2}$
Subtracting both the sides by 1:
$ \Rightarrow 1 + \sin 2\theta - 1 = {b^2} - 1$
$ \Rightarrow \sin 2\theta = {b^2} - 1$ ……(2)
We need to find the value of ${\left( {{b^2} - 1} \right)^2}\left( {{a^2} + 1} \right)$:
So, substituting 1 and 2 in the above equation and we get:
${\left( {{b^2} - 1} \right)^2}\left( {{a^2} + 1} \right)$
$ \Rightarrow {\left( {\sin 2\theta } \right)^2}\left( {\dfrac{4}{{{{\sin }^2}2\theta }}} \right)$
$ \Rightarrow {\sin ^2}2\theta \left( {\dfrac{4}{{{{\sin }^2}2\theta }}} \right)$
Cancelling out the common terms:
$ \Rightarrow {\sin ^2}2\theta \left( {\dfrac{4}{{{{\sin }^2}2\theta }}} \right) = 4$
Therefore, the value of ${\left( {{b^2} - 1} \right)^2}\left( {{a^2} + 1} \right) = 4$.
Hence, Option D is correct.
Note:
We can solve the equation ${\left( {{b^2} - 1} \right)^2}\left( {{a^2} + 1} \right)$ directly by substituting the two sub-equations given but squaring the terms and then solving it, may complicate the equation. So, it’s preferred to solve each equation separately and then substitute them.
Formula used:
$\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$
$\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}$
$\left( {{{\cos }^2}\theta - {{\sin }^2}\theta } \right) = \cos 2\theta $
$2\sin \theta \cos \theta = \sin 2\theta $
${\sin ^2}\theta + {\cos ^2}\theta = 1$
Complete answer:
We are given two equations: $\tan \theta - \cot \theta = a$ and $\sin \theta + \cos \theta = b$.
Taking each equation separately and solving them to their simplest term.
Starting with $\tan \theta - \cot \theta = a$.
Writing the equation $\tan \theta - \cot \theta = a$ in terms of sine and cosine and we get:
$\dfrac{{\sin \theta }}{{\cos \theta }} - \dfrac{{\cos \theta }}{{\sin \theta }} = a$
Taking a common denominator by solving them:
$ \Rightarrow \dfrac{{{{\sin }^2}\theta - {{\cos }^2}\theta }}{{\cos \theta \sin \theta }} = a$
Taking negative sign out:
$ \Rightarrow \dfrac{{ - \left( {{{\cos }^2}\theta - {{\sin }^2}\theta } \right)}}{{\cos \theta \sin \theta }} = a$
Multiplying and dividing both the denominator and numerator by 2 on the left side:
$ \Rightarrow \dfrac{{ - 2\left( {{{\cos }^2}\theta - {{\sin }^2}\theta } \right)}}{{2\sin \theta \cos \theta }} = a$
From the trigonometric formulas we know that $\left( {{{\cos }^2}\theta - {{\sin }^2}\theta } \right) = \cos 2\theta $ and $2\sin \theta \cos \theta = \sin 2\theta $, so substituting this in the above equation, we get:
$ \Rightarrow \dfrac{{ - 2\cos 2\theta }}{{\sin 2\theta }} = a$
Squaring both the sides:
$ \Rightarrow \dfrac{{{{\left( { - 2\cos 2\theta } \right)}^2}}}{{{{\sin }^2}2\theta }} = {a^2}$
$ \Rightarrow \dfrac{{4{{\cos }^2}2\theta }}{{{{\sin }^2}2\theta }} = {a^2}$
Adding 4 both the sides:
$ \Rightarrow 4 + \dfrac{{4{{\cos }^2}2\theta }}{{{{\sin }^2}2\theta }} = {a^2} + 4$
Multiplying and dividing 4 by ${\sin ^2}2\theta $ on the left side:
$ \Rightarrow 4\dfrac{{{{\sin }^2}2\theta }}{{{{\sin }^2}2\theta }} + \dfrac{{4{{\cos }^2}2\theta }}{{{{\sin }^2}2\theta }} = {a^2} + 4$
Taking ${\sin ^2}2\theta $ common in the denominator and 4 in the numerator, we get:
\[ \Rightarrow \dfrac{{4\left( {{{\sin }^2}2\theta + {{\cos }^2}2\theta } \right)}}{{{{\sin }^2}2\theta }} = {a^2} + 4\]
Since, we know that \[\left( {{{\sin }^2}2\theta + {{\cos }^2}2\theta } \right) = 1\]:
\[ \Rightarrow \dfrac{{4 \times 1}}{{{{\sin }^2}2\theta }} = {a^2} + 4\]
\[ \Rightarrow \dfrac{4}{{{{\sin }^2}2\theta }} = {a^2} + 4\] ……………..(1)
For the second equation $\sin \theta + \cos \theta = b$:
Squaring both the sides:
${\left( {\sin \theta + \cos \theta } \right)^2} = {b^2}$
Expanding the terms on the left side using ${\left( {x + y} \right)^2} = {x^2} + {y^2} + 2xy$:
$ \Rightarrow {\sin ^2}\theta + {\cos ^2}\theta + 2\sin \theta \cos \theta = {b^2}$
Substituting the value ${\sin ^2}\theta + {\cos ^2}\theta = 1$ and $2\sin \theta \cos \theta = \sin 2\theta $, we get:
$ \Rightarrow 1 + \sin 2\theta = {b^2}$
Subtracting both the sides by 1:
$ \Rightarrow 1 + \sin 2\theta - 1 = {b^2} - 1$
$ \Rightarrow \sin 2\theta = {b^2} - 1$ ……(2)
We need to find the value of ${\left( {{b^2} - 1} \right)^2}\left( {{a^2} + 1} \right)$:
So, substituting 1 and 2 in the above equation and we get:
${\left( {{b^2} - 1} \right)^2}\left( {{a^2} + 1} \right)$
$ \Rightarrow {\left( {\sin 2\theta } \right)^2}\left( {\dfrac{4}{{{{\sin }^2}2\theta }}} \right)$
$ \Rightarrow {\sin ^2}2\theta \left( {\dfrac{4}{{{{\sin }^2}2\theta }}} \right)$
Cancelling out the common terms:
$ \Rightarrow {\sin ^2}2\theta \left( {\dfrac{4}{{{{\sin }^2}2\theta }}} \right) = 4$
Therefore, the value of ${\left( {{b^2} - 1} \right)^2}\left( {{a^2} + 1} \right) = 4$.
Hence, Option D is correct.
Note:
We can solve the equation ${\left( {{b^2} - 1} \right)^2}\left( {{a^2} + 1} \right)$ directly by substituting the two sub-equations given but squaring the terms and then solving it, may complicate the equation. So, it’s preferred to solve each equation separately and then substitute them.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

