
If $\tan \theta - \cot \theta = a$ and $\sin \theta + \cos \theta = b$, then ${\left( {{b^2} - 1} \right)^2}\left( {{a^2} + 1} \right)$ is equal to
A.$2$
B.$ - 4$
C.$ \pm 4$
D.$4$
Answer
498.3k+ views
Hint: In order to solve the equation ${\left( {{b^2} - 1} \right)^2}\left( {{a^2} + 1} \right)$, solve the two equations given separately to find the value of ${b^2}$ and ${a^2}$, or the simplest that can be found and then substitute that value in the main equation ${\left( {{b^2} - 1} \right)^2}\left( {{a^2} + 1} \right)$ solve the obtained equation and get the results. Trigonometric identities are the main part used in this process.
Formula used:
$\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$
$\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}$
$\left( {{{\cos }^2}\theta - {{\sin }^2}\theta } \right) = \cos 2\theta $
$2\sin \theta \cos \theta = \sin 2\theta $
${\sin ^2}\theta + {\cos ^2}\theta = 1$
Complete answer:
We are given two equations: $\tan \theta - \cot \theta = a$ and $\sin \theta + \cos \theta = b$.
Taking each equation separately and solving them to their simplest term.
Starting with $\tan \theta - \cot \theta = a$.
Writing the equation $\tan \theta - \cot \theta = a$ in terms of sine and cosine and we get:
$\dfrac{{\sin \theta }}{{\cos \theta }} - \dfrac{{\cos \theta }}{{\sin \theta }} = a$
Taking a common denominator by solving them:
$ \Rightarrow \dfrac{{{{\sin }^2}\theta - {{\cos }^2}\theta }}{{\cos \theta \sin \theta }} = a$
Taking negative sign out:
$ \Rightarrow \dfrac{{ - \left( {{{\cos }^2}\theta - {{\sin }^2}\theta } \right)}}{{\cos \theta \sin \theta }} = a$
Multiplying and dividing both the denominator and numerator by 2 on the left side:
$ \Rightarrow \dfrac{{ - 2\left( {{{\cos }^2}\theta - {{\sin }^2}\theta } \right)}}{{2\sin \theta \cos \theta }} = a$
From the trigonometric formulas we know that $\left( {{{\cos }^2}\theta - {{\sin }^2}\theta } \right) = \cos 2\theta $ and $2\sin \theta \cos \theta = \sin 2\theta $, so substituting this in the above equation, we get:
$ \Rightarrow \dfrac{{ - 2\cos 2\theta }}{{\sin 2\theta }} = a$
Squaring both the sides:
$ \Rightarrow \dfrac{{{{\left( { - 2\cos 2\theta } \right)}^2}}}{{{{\sin }^2}2\theta }} = {a^2}$
$ \Rightarrow \dfrac{{4{{\cos }^2}2\theta }}{{{{\sin }^2}2\theta }} = {a^2}$
Adding 4 both the sides:
$ \Rightarrow 4 + \dfrac{{4{{\cos }^2}2\theta }}{{{{\sin }^2}2\theta }} = {a^2} + 4$
Multiplying and dividing 4 by ${\sin ^2}2\theta $ on the left side:
$ \Rightarrow 4\dfrac{{{{\sin }^2}2\theta }}{{{{\sin }^2}2\theta }} + \dfrac{{4{{\cos }^2}2\theta }}{{{{\sin }^2}2\theta }} = {a^2} + 4$
Taking ${\sin ^2}2\theta $ common in the denominator and 4 in the numerator, we get:
\[ \Rightarrow \dfrac{{4\left( {{{\sin }^2}2\theta + {{\cos }^2}2\theta } \right)}}{{{{\sin }^2}2\theta }} = {a^2} + 4\]
Since, we know that \[\left( {{{\sin }^2}2\theta + {{\cos }^2}2\theta } \right) = 1\]:
\[ \Rightarrow \dfrac{{4 \times 1}}{{{{\sin }^2}2\theta }} = {a^2} + 4\]
\[ \Rightarrow \dfrac{4}{{{{\sin }^2}2\theta }} = {a^2} + 4\] ……………..(1)
For the second equation $\sin \theta + \cos \theta = b$:
Squaring both the sides:
${\left( {\sin \theta + \cos \theta } \right)^2} = {b^2}$
Expanding the terms on the left side using ${\left( {x + y} \right)^2} = {x^2} + {y^2} + 2xy$:
$ \Rightarrow {\sin ^2}\theta + {\cos ^2}\theta + 2\sin \theta \cos \theta = {b^2}$
Substituting the value ${\sin ^2}\theta + {\cos ^2}\theta = 1$ and $2\sin \theta \cos \theta = \sin 2\theta $, we get:
$ \Rightarrow 1 + \sin 2\theta = {b^2}$
Subtracting both the sides by 1:
$ \Rightarrow 1 + \sin 2\theta - 1 = {b^2} - 1$
$ \Rightarrow \sin 2\theta = {b^2} - 1$ ……(2)
We need to find the value of ${\left( {{b^2} - 1} \right)^2}\left( {{a^2} + 1} \right)$:
So, substituting 1 and 2 in the above equation and we get:
${\left( {{b^2} - 1} \right)^2}\left( {{a^2} + 1} \right)$
$ \Rightarrow {\left( {\sin 2\theta } \right)^2}\left( {\dfrac{4}{{{{\sin }^2}2\theta }}} \right)$
$ \Rightarrow {\sin ^2}2\theta \left( {\dfrac{4}{{{{\sin }^2}2\theta }}} \right)$
Cancelling out the common terms:
$ \Rightarrow {\sin ^2}2\theta \left( {\dfrac{4}{{{{\sin }^2}2\theta }}} \right) = 4$
Therefore, the value of ${\left( {{b^2} - 1} \right)^2}\left( {{a^2} + 1} \right) = 4$.
Hence, Option D is correct.
Note:
We can solve the equation ${\left( {{b^2} - 1} \right)^2}\left( {{a^2} + 1} \right)$ directly by substituting the two sub-equations given but squaring the terms and then solving it, may complicate the equation. So, it’s preferred to solve each equation separately and then substitute them.
Formula used:
$\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$
$\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}$
$\left( {{{\cos }^2}\theta - {{\sin }^2}\theta } \right) = \cos 2\theta $
$2\sin \theta \cos \theta = \sin 2\theta $
${\sin ^2}\theta + {\cos ^2}\theta = 1$
Complete answer:
We are given two equations: $\tan \theta - \cot \theta = a$ and $\sin \theta + \cos \theta = b$.
Taking each equation separately and solving them to their simplest term.
Starting with $\tan \theta - \cot \theta = a$.
Writing the equation $\tan \theta - \cot \theta = a$ in terms of sine and cosine and we get:
$\dfrac{{\sin \theta }}{{\cos \theta }} - \dfrac{{\cos \theta }}{{\sin \theta }} = a$
Taking a common denominator by solving them:
$ \Rightarrow \dfrac{{{{\sin }^2}\theta - {{\cos }^2}\theta }}{{\cos \theta \sin \theta }} = a$
Taking negative sign out:
$ \Rightarrow \dfrac{{ - \left( {{{\cos }^2}\theta - {{\sin }^2}\theta } \right)}}{{\cos \theta \sin \theta }} = a$
Multiplying and dividing both the denominator and numerator by 2 on the left side:
$ \Rightarrow \dfrac{{ - 2\left( {{{\cos }^2}\theta - {{\sin }^2}\theta } \right)}}{{2\sin \theta \cos \theta }} = a$
From the trigonometric formulas we know that $\left( {{{\cos }^2}\theta - {{\sin }^2}\theta } \right) = \cos 2\theta $ and $2\sin \theta \cos \theta = \sin 2\theta $, so substituting this in the above equation, we get:
$ \Rightarrow \dfrac{{ - 2\cos 2\theta }}{{\sin 2\theta }} = a$
Squaring both the sides:
$ \Rightarrow \dfrac{{{{\left( { - 2\cos 2\theta } \right)}^2}}}{{{{\sin }^2}2\theta }} = {a^2}$
$ \Rightarrow \dfrac{{4{{\cos }^2}2\theta }}{{{{\sin }^2}2\theta }} = {a^2}$
Adding 4 both the sides:
$ \Rightarrow 4 + \dfrac{{4{{\cos }^2}2\theta }}{{{{\sin }^2}2\theta }} = {a^2} + 4$
Multiplying and dividing 4 by ${\sin ^2}2\theta $ on the left side:
$ \Rightarrow 4\dfrac{{{{\sin }^2}2\theta }}{{{{\sin }^2}2\theta }} + \dfrac{{4{{\cos }^2}2\theta }}{{{{\sin }^2}2\theta }} = {a^2} + 4$
Taking ${\sin ^2}2\theta $ common in the denominator and 4 in the numerator, we get:
\[ \Rightarrow \dfrac{{4\left( {{{\sin }^2}2\theta + {{\cos }^2}2\theta } \right)}}{{{{\sin }^2}2\theta }} = {a^2} + 4\]
Since, we know that \[\left( {{{\sin }^2}2\theta + {{\cos }^2}2\theta } \right) = 1\]:
\[ \Rightarrow \dfrac{{4 \times 1}}{{{{\sin }^2}2\theta }} = {a^2} + 4\]
\[ \Rightarrow \dfrac{4}{{{{\sin }^2}2\theta }} = {a^2} + 4\] ……………..(1)
For the second equation $\sin \theta + \cos \theta = b$:
Squaring both the sides:
${\left( {\sin \theta + \cos \theta } \right)^2} = {b^2}$
Expanding the terms on the left side using ${\left( {x + y} \right)^2} = {x^2} + {y^2} + 2xy$:
$ \Rightarrow {\sin ^2}\theta + {\cos ^2}\theta + 2\sin \theta \cos \theta = {b^2}$
Substituting the value ${\sin ^2}\theta + {\cos ^2}\theta = 1$ and $2\sin \theta \cos \theta = \sin 2\theta $, we get:
$ \Rightarrow 1 + \sin 2\theta = {b^2}$
Subtracting both the sides by 1:
$ \Rightarrow 1 + \sin 2\theta - 1 = {b^2} - 1$
$ \Rightarrow \sin 2\theta = {b^2} - 1$ ……(2)
We need to find the value of ${\left( {{b^2} - 1} \right)^2}\left( {{a^2} + 1} \right)$:
So, substituting 1 and 2 in the above equation and we get:
${\left( {{b^2} - 1} \right)^2}\left( {{a^2} + 1} \right)$
$ \Rightarrow {\left( {\sin 2\theta } \right)^2}\left( {\dfrac{4}{{{{\sin }^2}2\theta }}} \right)$
$ \Rightarrow {\sin ^2}2\theta \left( {\dfrac{4}{{{{\sin }^2}2\theta }}} \right)$
Cancelling out the common terms:
$ \Rightarrow {\sin ^2}2\theta \left( {\dfrac{4}{{{{\sin }^2}2\theta }}} \right) = 4$
Therefore, the value of ${\left( {{b^2} - 1} \right)^2}\left( {{a^2} + 1} \right) = 4$.
Hence, Option D is correct.
Note:
We can solve the equation ${\left( {{b^2} - 1} \right)^2}\left( {{a^2} + 1} \right)$ directly by substituting the two sub-equations given but squaring the terms and then solving it, may complicate the equation. So, it’s preferred to solve each equation separately and then substitute them.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

