
If \[\tan {\theta _1} = k\cot {\theta _2}\], then \[\dfrac{{\cos \left( {{\theta _1} - {\theta _2}} \right)}}{{\cos \left( {{\theta _1} + {\theta _2}} \right)}} = \].
A) \[\dfrac{{1 + k}}{{1 - k}}\]
B) \[\dfrac{{1 - k}}{{1 + k}}\]
C) \[\dfrac{{k + 1}}{{k - 1}}\]
D) \[\dfrac{{k - 1}}{{k + 1}}\]
Answer
507k+ views
Hint: Here, we will use the cosine property, \[\cos \left( {{\theta _1} - {\theta _2}} \right) = \cos {\theta _1}\cos {\theta _2} + \sin {\theta _1}\sin {\theta _2}\] in the numerator and \[\cos \left( {{\theta _1} + {\theta _2}} \right) = \cos {\theta _1}\cos {\theta _2} - \sin {\theta _1}\sin {\theta _2}\] in the denominator of the given equation. Then we will divide the numerator and denominator of the equation by \[\cos {\theta _1}\cos {\theta _2}\] and use the tangential property \[\tan {\theta _1} = \dfrac{{\sin {\theta _1}}}{{\cos {\theta _1}}}\] and \[\tan {\theta _2} = \dfrac{{\sin {\theta _2}}}{{\cos {\theta _2}}}\] in the obtained equation. Then we will substitute the given value to simply it to find the required value.
Complete step by step solution: We are given that \[\dfrac{{\cos \left( {{\theta _1} - {\theta _2}} \right)}}{{\cos \left( {{\theta _1} + {\theta _2}} \right)}}\].
Using the cosine property, \[\cos \left( {{\theta _1} - {\theta _2}} \right) = \cos {\theta _1}\cos {\theta _2} + \sin {\theta _1}\sin {\theta _2}\] in the numerator and \[\cos \left( {{\theta _1} + {\theta _2}} \right) = \cos {\theta _1}\cos {\theta _2} - \sin {\theta _1}\sin {\theta _2}\] in the denominator of the above equation, we get
\[ \Rightarrow \dfrac{{\cos {\theta _1}\cos {\theta _2} + \sin {\theta _1}\sin {\theta _2}}}{{\cos {\theta _1}\cos {\theta _2} - \sin {\theta _1}\sin {\theta _2}}}\]
Dividing the numerator and denominator of the above equation by \[\cos {\theta _1}\cos {\theta _2}\], we get
\[
\Rightarrow \dfrac{{\dfrac{{\cos {\theta _1}\cos {\theta _2} + \sin {\theta _1}\sin {\theta _2}}}{{\cos {\theta _1}\cos {\theta _2}}}}}{{\dfrac{{\cos {\theta _1}\cos {\theta _2} - \sin {\theta _1}\sin {\theta _2}}}{{\cos {\theta _1}\cos {\theta _2}}}}} \\
\Rightarrow \dfrac{{\dfrac{{\cos {\theta _1}\cos {\theta _2}}}{{\cos {\theta _1}\cos {\theta _2}}} + \dfrac{{\sin {\theta _1}\sin {\theta _2}}}{{\cos {\theta _1}\cos {\theta _2}}}}}{{\dfrac{{\cos {\theta _1}\cos {\theta _2}}}{{\cos {\theta _1}\cos {\theta _2}}} - \dfrac{{\sin {\theta _1}\sin {\theta _2}}}{{\cos {\theta _1}\cos {\theta _2}}}}} \\
\Rightarrow \dfrac{{1 + \dfrac{{\sin {\theta _1}}}{{\cos {\theta _1}}} \times \dfrac{{\sin {\theta _2}}}{{\cos {\theta _2}}}}}{{1 - \dfrac{{\sin {\theta _1}}}{{\cos {\theta _1}}} \times \dfrac{{\sin {\theta _2}}}{{\cos {\theta _2}}}}} \\
\]
Using the tangential property \[\tan {\theta _1} = \dfrac{{\sin {\theta _1}}}{{\cos {\theta _1}}}\] and \[\tan {\theta _2} = \dfrac{{\sin {\theta _2}}}{{\cos {\theta _2}}}\] in the above equation, we get
\[ \Rightarrow \dfrac{{1 + \tan {\theta _1}\tan {\theta _2}}}{{1 - \tan {\theta _1}\tan {\theta _2}}}\]
Substituting the value \[\tan {\theta _1} = k\cot {\theta _2}\] in the above equation, we get
\[ \Rightarrow \dfrac{{1 + k\cot {\theta _1}\tan {\theta _2}}}{{1 - k\cot {\theta _1}\tan {\theta _2}}}\]
Using the tangential property, \[\cot A\tan A = 1\]in the above equation, we get
\[ \Rightarrow \dfrac{{1 + k}}{{1 - k}}\]
Hence, option A is correct.
Note:
In this problem, students need to be thorough with the basic trigonometric value of different ratios, such as sine, cosine, tangent, their properties and the ways to use them to solve it. Be careful while using the properties in the given problem as there are two angles \[{\theta _1}\] and \[{\theta _2}\].
Complete step by step solution: We are given that \[\dfrac{{\cos \left( {{\theta _1} - {\theta _2}} \right)}}{{\cos \left( {{\theta _1} + {\theta _2}} \right)}}\].
Using the cosine property, \[\cos \left( {{\theta _1} - {\theta _2}} \right) = \cos {\theta _1}\cos {\theta _2} + \sin {\theta _1}\sin {\theta _2}\] in the numerator and \[\cos \left( {{\theta _1} + {\theta _2}} \right) = \cos {\theta _1}\cos {\theta _2} - \sin {\theta _1}\sin {\theta _2}\] in the denominator of the above equation, we get
\[ \Rightarrow \dfrac{{\cos {\theta _1}\cos {\theta _2} + \sin {\theta _1}\sin {\theta _2}}}{{\cos {\theta _1}\cos {\theta _2} - \sin {\theta _1}\sin {\theta _2}}}\]
Dividing the numerator and denominator of the above equation by \[\cos {\theta _1}\cos {\theta _2}\], we get
\[
\Rightarrow \dfrac{{\dfrac{{\cos {\theta _1}\cos {\theta _2} + \sin {\theta _1}\sin {\theta _2}}}{{\cos {\theta _1}\cos {\theta _2}}}}}{{\dfrac{{\cos {\theta _1}\cos {\theta _2} - \sin {\theta _1}\sin {\theta _2}}}{{\cos {\theta _1}\cos {\theta _2}}}}} \\
\Rightarrow \dfrac{{\dfrac{{\cos {\theta _1}\cos {\theta _2}}}{{\cos {\theta _1}\cos {\theta _2}}} + \dfrac{{\sin {\theta _1}\sin {\theta _2}}}{{\cos {\theta _1}\cos {\theta _2}}}}}{{\dfrac{{\cos {\theta _1}\cos {\theta _2}}}{{\cos {\theta _1}\cos {\theta _2}}} - \dfrac{{\sin {\theta _1}\sin {\theta _2}}}{{\cos {\theta _1}\cos {\theta _2}}}}} \\
\Rightarrow \dfrac{{1 + \dfrac{{\sin {\theta _1}}}{{\cos {\theta _1}}} \times \dfrac{{\sin {\theta _2}}}{{\cos {\theta _2}}}}}{{1 - \dfrac{{\sin {\theta _1}}}{{\cos {\theta _1}}} \times \dfrac{{\sin {\theta _2}}}{{\cos {\theta _2}}}}} \\
\]
Using the tangential property \[\tan {\theta _1} = \dfrac{{\sin {\theta _1}}}{{\cos {\theta _1}}}\] and \[\tan {\theta _2} = \dfrac{{\sin {\theta _2}}}{{\cos {\theta _2}}}\] in the above equation, we get
\[ \Rightarrow \dfrac{{1 + \tan {\theta _1}\tan {\theta _2}}}{{1 - \tan {\theta _1}\tan {\theta _2}}}\]
Substituting the value \[\tan {\theta _1} = k\cot {\theta _2}\] in the above equation, we get
\[ \Rightarrow \dfrac{{1 + k\cot {\theta _1}\tan {\theta _2}}}{{1 - k\cot {\theta _1}\tan {\theta _2}}}\]
Using the tangential property, \[\cot A\tan A = 1\]in the above equation, we get
\[ \Rightarrow \dfrac{{1 + k}}{{1 - k}}\]
Hence, option A is correct.
Note:
In this problem, students need to be thorough with the basic trigonometric value of different ratios, such as sine, cosine, tangent, their properties and the ways to use them to solve it. Be careful while using the properties in the given problem as there are two angles \[{\theta _1}\] and \[{\theta _2}\].
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

The non protein part of an enzyme is a A Prosthetic class 11 biology CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

What is a zygomorphic flower Give example class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

The deoxygenated blood from the hind limbs of the frog class 11 biology CBSE
