
If \[\tan \theta + \sec \theta = {e^x}\], then the value of $\cos \theta $ equals:
(A) $\dfrac{{\left( {{e^x} + {e^{ - x}}} \right)}}{2}$
(B) $\dfrac{2}{{\left( {{e^x} + {e^{ - x}}} \right)}}$
(C) $\dfrac{{\left( {{e^x} - {e^{ - x}}} \right)}}{2}$
(D) $\dfrac{{\left( {{e^x} - {e^{ - x}}} \right)}}{{\left( {{e^x} + {e^{ - x}}} \right)}}$
Answer
497.4k+ views
Hint: The given problem requires us to simplify the given trigonometric expression. The question requires thorough knowledge of trigonometric functions, formulae and identities. We are given an equation involving the trigonometric functions $\sec \theta $ and $\tan \theta $ . We will first use the trigonometric ${\sec ^2}\theta - {\tan ^2}\theta = 1$ to find the value of trigonometric functions $\sec \theta $ and $\tan \theta $. Then, we find the value of $\cos \theta $ using some basic trigonometric formulae.
Complete answer: In the given question, we are given a trigonometric equation \[\tan \theta + \sec \theta = {e^x}\].
So, we have a trigonometric identity ${\sec ^2}\theta - {\tan ^2}\theta = 1$.
Factorising the left side of the equation, we get,
$ \Rightarrow \left( {\sec \theta - \tan \theta } \right)\left( {\sec \theta + \tan \theta } \right) = 1$
Now, substituting the value of $\left( {\sec \theta + \tan \theta } \right)$, we get,
$ \Rightarrow \left( {\sec \theta - \tan \theta } \right)\left( {{e^x}} \right) = 1$
$ \Rightarrow \left( {\sec \theta - \tan \theta } \right) = \dfrac{1}{{{e^x}}}$
So, we have the value of $\left( {\sec \theta - \tan \theta } \right)$ as $\dfrac{1}{{{e^x}}}$.
Now, adding the equations $\left( 1 \right)$ and $\left( 2 \right)$, we get,
$ \Rightarrow \left( {\sec \theta - \tan \theta } \right) + \left( {\tan \theta + \sec \theta } \right) = \dfrac{1}{{{e^x}}} + {e^x}$
So, simplifying the equation by cancelling the like terms with opposite signs, we get,
$ \Rightarrow 2\sec \theta = {e^{ - x}} + {e^x}$
Now, we use the law of negative exponents, ${a^{ - x}} = \dfrac{1}{{{a^x}}}$.
Dividing the equation by $2$, we get,
$ \Rightarrow \sec \theta = \left( {\dfrac{{{e^{ - x}} + {e^x}}}{2}} \right)$
So, we get the value of secant of the angle as $\left( {\dfrac{{{e^{ - x}} + {e^x}}}{2}} \right)$ from the given equation. Now, we know that cosine and secant functions are reciprocal of each other. So, we get the value of cosine as,
$ \Rightarrow \cos \theta = \left( {\dfrac{2}{{{e^{ - x}} + {e^x}}}} \right)$
So, we get the value of cosine as $\left( {\dfrac{2}{{{e^{ - x}} + {e^x}}}} \right)$.
Therefore, option (B) is the correct answer.
Note:
The trigonometric identities are of vital importance for solving any question involving trigonometric functions and identities. All the trigonometric ratios can be converted into each other using the simple trigonometric identities. Such questions require thorough knowledge of trigonometric conversions and ratios. Algebraic operations and rules like transposition rules come into significant use while solving such problems.
Complete answer: In the given question, we are given a trigonometric equation \[\tan \theta + \sec \theta = {e^x}\].
So, we have a trigonometric identity ${\sec ^2}\theta - {\tan ^2}\theta = 1$.
Factorising the left side of the equation, we get,
$ \Rightarrow \left( {\sec \theta - \tan \theta } \right)\left( {\sec \theta + \tan \theta } \right) = 1$
Now, substituting the value of $\left( {\sec \theta + \tan \theta } \right)$, we get,
$ \Rightarrow \left( {\sec \theta - \tan \theta } \right)\left( {{e^x}} \right) = 1$
$ \Rightarrow \left( {\sec \theta - \tan \theta } \right) = \dfrac{1}{{{e^x}}}$
So, we have the value of $\left( {\sec \theta - \tan \theta } \right)$ as $\dfrac{1}{{{e^x}}}$.
Now, adding the equations $\left( 1 \right)$ and $\left( 2 \right)$, we get,
$ \Rightarrow \left( {\sec \theta - \tan \theta } \right) + \left( {\tan \theta + \sec \theta } \right) = \dfrac{1}{{{e^x}}} + {e^x}$
So, simplifying the equation by cancelling the like terms with opposite signs, we get,
$ \Rightarrow 2\sec \theta = {e^{ - x}} + {e^x}$
Now, we use the law of negative exponents, ${a^{ - x}} = \dfrac{1}{{{a^x}}}$.
Dividing the equation by $2$, we get,
$ \Rightarrow \sec \theta = \left( {\dfrac{{{e^{ - x}} + {e^x}}}{2}} \right)$
So, we get the value of secant of the angle as $\left( {\dfrac{{{e^{ - x}} + {e^x}}}{2}} \right)$ from the given equation. Now, we know that cosine and secant functions are reciprocal of each other. So, we get the value of cosine as,
$ \Rightarrow \cos \theta = \left( {\dfrac{2}{{{e^{ - x}} + {e^x}}}} \right)$
So, we get the value of cosine as $\left( {\dfrac{2}{{{e^{ - x}} + {e^x}}}} \right)$.
Therefore, option (B) is the correct answer.
Note:
The trigonometric identities are of vital importance for solving any question involving trigonometric functions and identities. All the trigonometric ratios can be converted into each other using the simple trigonometric identities. Such questions require thorough knowledge of trigonometric conversions and ratios. Algebraic operations and rules like transposition rules come into significant use while solving such problems.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

