
If \[\tan \theta + \sec \theta = {e^x}\], then the value of $\cos \theta $ equals:
(A) $\dfrac{{\left( {{e^x} + {e^{ - x}}} \right)}}{2}$
(B) $\dfrac{2}{{\left( {{e^x} + {e^{ - x}}} \right)}}$
(C) $\dfrac{{\left( {{e^x} - {e^{ - x}}} \right)}}{2}$
(D) $\dfrac{{\left( {{e^x} - {e^{ - x}}} \right)}}{{\left( {{e^x} + {e^{ - x}}} \right)}}$
Answer
416.7k+ views
Hint: The given problem requires us to simplify the given trigonometric expression. The question requires thorough knowledge of trigonometric functions, formulae and identities. We are given an equation involving the trigonometric functions $\sec \theta $ and $\tan \theta $ . We will first use the trigonometric ${\sec ^2}\theta - {\tan ^2}\theta = 1$ to find the value of trigonometric functions $\sec \theta $ and $\tan \theta $. Then, we find the value of $\cos \theta $ using some basic trigonometric formulae.
Complete answer: In the given question, we are given a trigonometric equation \[\tan \theta + \sec \theta = {e^x}\].
So, we have a trigonometric identity ${\sec ^2}\theta - {\tan ^2}\theta = 1$.
Factorising the left side of the equation, we get,
$ \Rightarrow \left( {\sec \theta - \tan \theta } \right)\left( {\sec \theta + \tan \theta } \right) = 1$
Now, substituting the value of $\left( {\sec \theta + \tan \theta } \right)$, we get,
$ \Rightarrow \left( {\sec \theta - \tan \theta } \right)\left( {{e^x}} \right) = 1$
$ \Rightarrow \left( {\sec \theta - \tan \theta } \right) = \dfrac{1}{{{e^x}}}$
So, we have the value of $\left( {\sec \theta - \tan \theta } \right)$ as $\dfrac{1}{{{e^x}}}$.
Now, adding the equations $\left( 1 \right)$ and $\left( 2 \right)$, we get,
$ \Rightarrow \left( {\sec \theta - \tan \theta } \right) + \left( {\tan \theta + \sec \theta } \right) = \dfrac{1}{{{e^x}}} + {e^x}$
So, simplifying the equation by cancelling the like terms with opposite signs, we get,
$ \Rightarrow 2\sec \theta = {e^{ - x}} + {e^x}$
Now, we use the law of negative exponents, ${a^{ - x}} = \dfrac{1}{{{a^x}}}$.
Dividing the equation by $2$, we get,
$ \Rightarrow \sec \theta = \left( {\dfrac{{{e^{ - x}} + {e^x}}}{2}} \right)$
So, we get the value of secant of the angle as $\left( {\dfrac{{{e^{ - x}} + {e^x}}}{2}} \right)$ from the given equation. Now, we know that cosine and secant functions are reciprocal of each other. So, we get the value of cosine as,
$ \Rightarrow \cos \theta = \left( {\dfrac{2}{{{e^{ - x}} + {e^x}}}} \right)$
So, we get the value of cosine as $\left( {\dfrac{2}{{{e^{ - x}} + {e^x}}}} \right)$.
Therefore, option (B) is the correct answer.
Note:
The trigonometric identities are of vital importance for solving any question involving trigonometric functions and identities. All the trigonometric ratios can be converted into each other using the simple trigonometric identities. Such questions require thorough knowledge of trigonometric conversions and ratios. Algebraic operations and rules like transposition rules come into significant use while solving such problems.
Complete answer: In the given question, we are given a trigonometric equation \[\tan \theta + \sec \theta = {e^x}\].
So, we have a trigonometric identity ${\sec ^2}\theta - {\tan ^2}\theta = 1$.
Factorising the left side of the equation, we get,
$ \Rightarrow \left( {\sec \theta - \tan \theta } \right)\left( {\sec \theta + \tan \theta } \right) = 1$
Now, substituting the value of $\left( {\sec \theta + \tan \theta } \right)$, we get,
$ \Rightarrow \left( {\sec \theta - \tan \theta } \right)\left( {{e^x}} \right) = 1$
$ \Rightarrow \left( {\sec \theta - \tan \theta } \right) = \dfrac{1}{{{e^x}}}$
So, we have the value of $\left( {\sec \theta - \tan \theta } \right)$ as $\dfrac{1}{{{e^x}}}$.
Now, adding the equations $\left( 1 \right)$ and $\left( 2 \right)$, we get,
$ \Rightarrow \left( {\sec \theta - \tan \theta } \right) + \left( {\tan \theta + \sec \theta } \right) = \dfrac{1}{{{e^x}}} + {e^x}$
So, simplifying the equation by cancelling the like terms with opposite signs, we get,
$ \Rightarrow 2\sec \theta = {e^{ - x}} + {e^x}$
Now, we use the law of negative exponents, ${a^{ - x}} = \dfrac{1}{{{a^x}}}$.
Dividing the equation by $2$, we get,
$ \Rightarrow \sec \theta = \left( {\dfrac{{{e^{ - x}} + {e^x}}}{2}} \right)$
So, we get the value of secant of the angle as $\left( {\dfrac{{{e^{ - x}} + {e^x}}}{2}} \right)$ from the given equation. Now, we know that cosine and secant functions are reciprocal of each other. So, we get the value of cosine as,
$ \Rightarrow \cos \theta = \left( {\dfrac{2}{{{e^{ - x}} + {e^x}}}} \right)$
So, we get the value of cosine as $\left( {\dfrac{2}{{{e^{ - x}} + {e^x}}}} \right)$.
Therefore, option (B) is the correct answer.
Note:
The trigonometric identities are of vital importance for solving any question involving trigonometric functions and identities. All the trigonometric ratios can be converted into each other using the simple trigonometric identities. Such questions require thorough knowledge of trigonometric conversions and ratios. Algebraic operations and rules like transposition rules come into significant use while solving such problems.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE
