
If \[\tan \left( A+B \right)=x\ and\ \tan \left( A-B \right)=y\], find the values of tan2A and tan2B.
Answer
610.2k+ views
Hint: We will be using the concept of trigonometric identities to solve the problem. We will write tan2A as $\tan \left( \left( A+B \right)+\left( A-B \right) \right)$ then will apply the formula for $\tan \left( x+y \right)=\dfrac{\tan x+\tan y}{1-\tan x\tan y}$ and substitute the value of \[\tan \left( A+B \right)\ and\ \tan \left( A-B \right)\] to find the value of tan2A. We will be using a similar approach for tan2B also.
Complete step-by-step answer:
Now, we have been given that,
\[\begin{align}
& \tan \left( A+B \right)=x............\left( 1 \right) \\
& \tan \left( A-B \right)=y............\left( 2 \right) \\
\end{align}\]
Now, we have to find the values of tan2A and tan2B.
We can rewrite tan2A as,
$\tan 2A=\tan \left( \left( A+B \right)+\left( A-B \right) \right)$
Now, we will use trigonometric identity that,
$\tan \left( x+y \right)=\dfrac{\tan x+\tan y}{1-\tan x\tan y}$
So, we have,
$=\dfrac{\tan \left( A+B \right)+\tan \left( A-B \right)}{1-\tan \left( A+B \right)\tan \left( A-B \right)}$
Now, we will substitute the value from (1) and (2). So, we have,
$\tan 2A=\dfrac{x+y}{x-y}$
Now, tan2B can also be rewritten as,
$\tan 2B=\tan \left( \left( A+B \right)-\left( A-B \right) \right)$
Now, we will use trigonometric identity that,
$\tan \left( x-y \right)=\dfrac{\tan x-\tan y}{1+\tan x\tan y}$
So, we have,
$\tan 2B=\dfrac{\tan \left( A+B \right)-\tan \left( A-B \right)}{1+\tan \left( A+B \right)\tan \left( A-B \right)}$
Now, we will substitute the value from (1) and (2). So, we have,
$\tan \left( 2B \right)=\dfrac{x-y}{1+xy}$
Note: To solve these type of questions it is important to note how we have write tan2A as $\tan \left( \left( A+B \right)+\left( A-B \right) \right)$ and used the values of \[\tan \left( A+B \right)=x\ and\ \tan \left( A-B \right)=y\] to find the values of tan2A and tan2B.
Complete step-by-step answer:
Now, we have been given that,
\[\begin{align}
& \tan \left( A+B \right)=x............\left( 1 \right) \\
& \tan \left( A-B \right)=y............\left( 2 \right) \\
\end{align}\]
Now, we have to find the values of tan2A and tan2B.
We can rewrite tan2A as,
$\tan 2A=\tan \left( \left( A+B \right)+\left( A-B \right) \right)$
Now, we will use trigonometric identity that,
$\tan \left( x+y \right)=\dfrac{\tan x+\tan y}{1-\tan x\tan y}$
So, we have,
$=\dfrac{\tan \left( A+B \right)+\tan \left( A-B \right)}{1-\tan \left( A+B \right)\tan \left( A-B \right)}$
Now, we will substitute the value from (1) and (2). So, we have,
$\tan 2A=\dfrac{x+y}{x-y}$
Now, tan2B can also be rewritten as,
$\tan 2B=\tan \left( \left( A+B \right)-\left( A-B \right) \right)$
Now, we will use trigonometric identity that,
$\tan \left( x-y \right)=\dfrac{\tan x-\tan y}{1+\tan x\tan y}$
So, we have,
$\tan 2B=\dfrac{\tan \left( A+B \right)-\tan \left( A-B \right)}{1+\tan \left( A+B \right)\tan \left( A-B \right)}$
Now, we will substitute the value from (1) and (2). So, we have,
$\tan \left( 2B \right)=\dfrac{x-y}{1+xy}$
Note: To solve these type of questions it is important to note how we have write tan2A as $\tan \left( \left( A+B \right)+\left( A-B \right) \right)$ and used the values of \[\tan \left( A+B \right)=x\ and\ \tan \left( A-B \right)=y\] to find the values of tan2A and tan2B.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

