
If $$\tan \dfrac{A}{2} =r$$ then the value of $$\left( \sec A+\tan A\right) $$ is equal to
A) $$\dfrac{2+r}{2-r}$$
B) $$\dfrac{2-r}{2+r}$$
C) $$\dfrac{1+r}{1-r}$$
D) $$\dfrac{1-r}{1+r}$$
Answer
606k+ views
Hint: In this question it is given that we have to find the value of $$\left( \sec A+\tan A\right) $$, where $$\tan \dfrac{A}{2} =r$$. So to find the solution we have to write $\sec A$, $ \tan A$ as $$\dfrac{1}{\cos A}$$, $$\dfrac{\sin A}{\cos A}$$ respectively. Also we have to change the angle $A$ to $\dfrac{A}{2}$, because as we know that $$\tan \dfrac{A}{2} =r$$ and then after simplification we will get our required solution.
Complete step-by-step solution:
Let the given expression as
$$S=\left( \sec A+\tan A\right) $$
$$=\left( \dfrac{1}{\cos A} +\dfrac{\sin A}{\cos A} \right) $$
$$=\left( \dfrac{1+\sin A}{\cos A} \right) $$
Now as we know that,
$$\cos \theta =\cos^{2} \dfrac{\theta }{2} -\sin^{2} \dfrac{\theta }{2}$$, and
$$\sin \theta =2\sin \dfrac{\theta }{2} \cos \dfrac{\theta }{2}$$
so by using this formula, we get,
$$S=\dfrac{1+2\sin \dfrac{A}{2} \cos \dfrac{A}{2} }{\cos^{2} \dfrac{A}{2} -\sin^{2} \dfrac{A}{2} }$$
$$=\dfrac{\sin^{2} \dfrac{A}{2} +\cos^{2} \dfrac{A}{2} +2\sin \dfrac{A}{2} \cos \dfrac{A}{2} }{\cos^{2} \dfrac{A}{2} -\sin^{2} \dfrac{A}{2} }$$ [ since, $$\sin^{2} \dfrac{A}{2} +\cos^{2} \dfrac{A}{2} =1$$]
As we know that,
$$a^{2}+2ab+b^{2}=\left( a+b\right)^{2} $$.......(1) and
$$a^{2}-b^{2}=\left( a+b\right) \left( a-b\right) $$.....(2),
so by applying identity (1) in numerator and identity (2) in denominator we get,
$$S=\dfrac{\left( \cos \dfrac{A}{2} +\sin \dfrac{A}{2} \right)^{2} }{\left( \cos \dfrac{A}{2} +\sin \dfrac{A}{2} \right) \left( \cos \dfrac{A}{2} -\sin \dfrac{A}{2} \right) }$$ [ taking $$a=\cos \dfrac{A}{2}$$ & $$b=\sin \dfrac{A}{2}$$]
$$=\dfrac{\left( \cos \dfrac{A}{2} +\sin \dfrac{A}{2} \right) }{\left( \cos \dfrac{A}{2} -\sin \dfrac{A}{2} \right) }$$
Now dividing numerator and denominator by $$\cos \dfrac{A}{2}$$, we get,
$$S=\dfrac{1+\left( \dfrac{\sin \dfrac{A}{2} }{\cos \dfrac{A}{2} } \right) }{1-\left( \dfrac{\sin \dfrac{A}{2} }{\cos \dfrac{A}{2} } \right) }$$
$$=\dfrac{1+\tan \dfrac{A}{2} }{1-\tan \dfrac{A}{2} }$$
$$=\dfrac{1+r}{1-r}$$ [since, $$\tan \dfrac{A}{2} =r$$]
Hence, the correct option is option C.
Note: While simplifying a big expression, try to express it in terms of one or two basic trigonometric functions, like we have transformed the above expression in terms of $cosine$ and $sine$, also try to find an order in the problem to apply trigonometric identities, properties and transformations.
Complete step-by-step solution:
Let the given expression as
$$S=\left( \sec A+\tan A\right) $$
$$=\left( \dfrac{1}{\cos A} +\dfrac{\sin A}{\cos A} \right) $$
$$=\left( \dfrac{1+\sin A}{\cos A} \right) $$
Now as we know that,
$$\cos \theta =\cos^{2} \dfrac{\theta }{2} -\sin^{2} \dfrac{\theta }{2}$$, and
$$\sin \theta =2\sin \dfrac{\theta }{2} \cos \dfrac{\theta }{2}$$
so by using this formula, we get,
$$S=\dfrac{1+2\sin \dfrac{A}{2} \cos \dfrac{A}{2} }{\cos^{2} \dfrac{A}{2} -\sin^{2} \dfrac{A}{2} }$$
$$=\dfrac{\sin^{2} \dfrac{A}{2} +\cos^{2} \dfrac{A}{2} +2\sin \dfrac{A}{2} \cos \dfrac{A}{2} }{\cos^{2} \dfrac{A}{2} -\sin^{2} \dfrac{A}{2} }$$ [ since, $$\sin^{2} \dfrac{A}{2} +\cos^{2} \dfrac{A}{2} =1$$]
As we know that,
$$a^{2}+2ab+b^{2}=\left( a+b\right)^{2} $$.......(1) and
$$a^{2}-b^{2}=\left( a+b\right) \left( a-b\right) $$.....(2),
so by applying identity (1) in numerator and identity (2) in denominator we get,
$$S=\dfrac{\left( \cos \dfrac{A}{2} +\sin \dfrac{A}{2} \right)^{2} }{\left( \cos \dfrac{A}{2} +\sin \dfrac{A}{2} \right) \left( \cos \dfrac{A}{2} -\sin \dfrac{A}{2} \right) }$$ [ taking $$a=\cos \dfrac{A}{2}$$ & $$b=\sin \dfrac{A}{2}$$]
$$=\dfrac{\left( \cos \dfrac{A}{2} +\sin \dfrac{A}{2} \right) }{\left( \cos \dfrac{A}{2} -\sin \dfrac{A}{2} \right) }$$
Now dividing numerator and denominator by $$\cos \dfrac{A}{2}$$, we get,
$$S=\dfrac{1+\left( \dfrac{\sin \dfrac{A}{2} }{\cos \dfrac{A}{2} } \right) }{1-\left( \dfrac{\sin \dfrac{A}{2} }{\cos \dfrac{A}{2} } \right) }$$
$$=\dfrac{1+\tan \dfrac{A}{2} }{1-\tan \dfrac{A}{2} }$$
$$=\dfrac{1+r}{1-r}$$ [since, $$\tan \dfrac{A}{2} =r$$]
Hence, the correct option is option C.
Note: While simplifying a big expression, try to express it in terms of one or two basic trigonometric functions, like we have transformed the above expression in terms of $cosine$ and $sine$, also try to find an order in the problem to apply trigonometric identities, properties and transformations.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

