
If $$\tan \dfrac{A}{2} =r$$ then the value of $$\left( \sec A+\tan A\right) $$ is equal to
A) $$\dfrac{2+r}{2-r}$$
B) $$\dfrac{2-r}{2+r}$$
C) $$\dfrac{1+r}{1-r}$$
D) $$\dfrac{1-r}{1+r}$$
Answer
591.3k+ views
Hint: In this question it is given that we have to find the value of $$\left( \sec A+\tan A\right) $$, where $$\tan \dfrac{A}{2} =r$$. So to find the solution we have to write $\sec A$, $ \tan A$ as $$\dfrac{1}{\cos A}$$, $$\dfrac{\sin A}{\cos A}$$ respectively. Also we have to change the angle $A$ to $\dfrac{A}{2}$, because as we know that $$\tan \dfrac{A}{2} =r$$ and then after simplification we will get our required solution.
Complete step-by-step solution:
Let the given expression as
$$S=\left( \sec A+\tan A\right) $$
$$=\left( \dfrac{1}{\cos A} +\dfrac{\sin A}{\cos A} \right) $$
$$=\left( \dfrac{1+\sin A}{\cos A} \right) $$
Now as we know that,
$$\cos \theta =\cos^{2} \dfrac{\theta }{2} -\sin^{2} \dfrac{\theta }{2}$$, and
$$\sin \theta =2\sin \dfrac{\theta }{2} \cos \dfrac{\theta }{2}$$
so by using this formula, we get,
$$S=\dfrac{1+2\sin \dfrac{A}{2} \cos \dfrac{A}{2} }{\cos^{2} \dfrac{A}{2} -\sin^{2} \dfrac{A}{2} }$$
$$=\dfrac{\sin^{2} \dfrac{A}{2} +\cos^{2} \dfrac{A}{2} +2\sin \dfrac{A}{2} \cos \dfrac{A}{2} }{\cos^{2} \dfrac{A}{2} -\sin^{2} \dfrac{A}{2} }$$ [ since, $$\sin^{2} \dfrac{A}{2} +\cos^{2} \dfrac{A}{2} =1$$]
As we know that,
$$a^{2}+2ab+b^{2}=\left( a+b\right)^{2} $$.......(1) and
$$a^{2}-b^{2}=\left( a+b\right) \left( a-b\right) $$.....(2),
so by applying identity (1) in numerator and identity (2) in denominator we get,
$$S=\dfrac{\left( \cos \dfrac{A}{2} +\sin \dfrac{A}{2} \right)^{2} }{\left( \cos \dfrac{A}{2} +\sin \dfrac{A}{2} \right) \left( \cos \dfrac{A}{2} -\sin \dfrac{A}{2} \right) }$$ [ taking $$a=\cos \dfrac{A}{2}$$ & $$b=\sin \dfrac{A}{2}$$]
$$=\dfrac{\left( \cos \dfrac{A}{2} +\sin \dfrac{A}{2} \right) }{\left( \cos \dfrac{A}{2} -\sin \dfrac{A}{2} \right) }$$
Now dividing numerator and denominator by $$\cos \dfrac{A}{2}$$, we get,
$$S=\dfrac{1+\left( \dfrac{\sin \dfrac{A}{2} }{\cos \dfrac{A}{2} } \right) }{1-\left( \dfrac{\sin \dfrac{A}{2} }{\cos \dfrac{A}{2} } \right) }$$
$$=\dfrac{1+\tan \dfrac{A}{2} }{1-\tan \dfrac{A}{2} }$$
$$=\dfrac{1+r}{1-r}$$ [since, $$\tan \dfrac{A}{2} =r$$]
Hence, the correct option is option C.
Note: While simplifying a big expression, try to express it in terms of one or two basic trigonometric functions, like we have transformed the above expression in terms of $cosine$ and $sine$, also try to find an order in the problem to apply trigonometric identities, properties and transformations.
Complete step-by-step solution:
Let the given expression as
$$S=\left( \sec A+\tan A\right) $$
$$=\left( \dfrac{1}{\cos A} +\dfrac{\sin A}{\cos A} \right) $$
$$=\left( \dfrac{1+\sin A}{\cos A} \right) $$
Now as we know that,
$$\cos \theta =\cos^{2} \dfrac{\theta }{2} -\sin^{2} \dfrac{\theta }{2}$$, and
$$\sin \theta =2\sin \dfrac{\theta }{2} \cos \dfrac{\theta }{2}$$
so by using this formula, we get,
$$S=\dfrac{1+2\sin \dfrac{A}{2} \cos \dfrac{A}{2} }{\cos^{2} \dfrac{A}{2} -\sin^{2} \dfrac{A}{2} }$$
$$=\dfrac{\sin^{2} \dfrac{A}{2} +\cos^{2} \dfrac{A}{2} +2\sin \dfrac{A}{2} \cos \dfrac{A}{2} }{\cos^{2} \dfrac{A}{2} -\sin^{2} \dfrac{A}{2} }$$ [ since, $$\sin^{2} \dfrac{A}{2} +\cos^{2} \dfrac{A}{2} =1$$]
As we know that,
$$a^{2}+2ab+b^{2}=\left( a+b\right)^{2} $$.......(1) and
$$a^{2}-b^{2}=\left( a+b\right) \left( a-b\right) $$.....(2),
so by applying identity (1) in numerator and identity (2) in denominator we get,
$$S=\dfrac{\left( \cos \dfrac{A}{2} +\sin \dfrac{A}{2} \right)^{2} }{\left( \cos \dfrac{A}{2} +\sin \dfrac{A}{2} \right) \left( \cos \dfrac{A}{2} -\sin \dfrac{A}{2} \right) }$$ [ taking $$a=\cos \dfrac{A}{2}$$ & $$b=\sin \dfrac{A}{2}$$]
$$=\dfrac{\left( \cos \dfrac{A}{2} +\sin \dfrac{A}{2} \right) }{\left( \cos \dfrac{A}{2} -\sin \dfrac{A}{2} \right) }$$
Now dividing numerator and denominator by $$\cos \dfrac{A}{2}$$, we get,
$$S=\dfrac{1+\left( \dfrac{\sin \dfrac{A}{2} }{\cos \dfrac{A}{2} } \right) }{1-\left( \dfrac{\sin \dfrac{A}{2} }{\cos \dfrac{A}{2} } \right) }$$
$$=\dfrac{1+\tan \dfrac{A}{2} }{1-\tan \dfrac{A}{2} }$$
$$=\dfrac{1+r}{1-r}$$ [since, $$\tan \dfrac{A}{2} =r$$]
Hence, the correct option is option C.
Note: While simplifying a big expression, try to express it in terms of one or two basic trigonometric functions, like we have transformed the above expression in terms of $cosine$ and $sine$, also try to find an order in the problem to apply trigonometric identities, properties and transformations.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

