
If $$\tan \dfrac{A}{2} =r$$ then the value of $$\left( \sec A+\tan A\right) $$ is equal to
A) $$\dfrac{2+r}{2-r}$$
B) $$\dfrac{2-r}{2+r}$$
C) $$\dfrac{1+r}{1-r}$$
D) $$\dfrac{1-r}{1+r}$$
Answer
508.8k+ views
Hint: In this question it is given that we have to find the value of $$\left( \sec A+\tan A\right) $$, where $$\tan \dfrac{A}{2} =r$$. So to find the solution we have to write $\sec A$, $ \tan A$ as $$\dfrac{1}{\cos A}$$, $$\dfrac{\sin A}{\cos A}$$ respectively. Also we have to change the angle $A$ to $\dfrac{A}{2}$, because as we know that $$\tan \dfrac{A}{2} =r$$ and then after simplification we will get our required solution.
Complete step-by-step solution:
Let the given expression as
$$S=\left( \sec A+\tan A\right) $$
$$=\left( \dfrac{1}{\cos A} +\dfrac{\sin A}{\cos A} \right) $$
$$=\left( \dfrac{1+\sin A}{\cos A} \right) $$
Now as we know that,
$$\cos \theta =\cos^{2} \dfrac{\theta }{2} -\sin^{2} \dfrac{\theta }{2}$$, and
$$\sin \theta =2\sin \dfrac{\theta }{2} \cos \dfrac{\theta }{2}$$
so by using this formula, we get,
$$S=\dfrac{1+2\sin \dfrac{A}{2} \cos \dfrac{A}{2} }{\cos^{2} \dfrac{A}{2} -\sin^{2} \dfrac{A}{2} }$$
$$=\dfrac{\sin^{2} \dfrac{A}{2} +\cos^{2} \dfrac{A}{2} +2\sin \dfrac{A}{2} \cos \dfrac{A}{2} }{\cos^{2} \dfrac{A}{2} -\sin^{2} \dfrac{A}{2} }$$ [ since, $$\sin^{2} \dfrac{A}{2} +\cos^{2} \dfrac{A}{2} =1$$]
As we know that,
$$a^{2}+2ab+b^{2}=\left( a+b\right)^{2} $$.......(1) and
$$a^{2}-b^{2}=\left( a+b\right) \left( a-b\right) $$.....(2),
so by applying identity (1) in numerator and identity (2) in denominator we get,
$$S=\dfrac{\left( \cos \dfrac{A}{2} +\sin \dfrac{A}{2} \right)^{2} }{\left( \cos \dfrac{A}{2} +\sin \dfrac{A}{2} \right) \left( \cos \dfrac{A}{2} -\sin \dfrac{A}{2} \right) }$$ [ taking $$a=\cos \dfrac{A}{2}$$ & $$b=\sin \dfrac{A}{2}$$]
$$=\dfrac{\left( \cos \dfrac{A}{2} +\sin \dfrac{A}{2} \right) }{\left( \cos \dfrac{A}{2} -\sin \dfrac{A}{2} \right) }$$
Now dividing numerator and denominator by $$\cos \dfrac{A}{2}$$, we get,
$$S=\dfrac{1+\left( \dfrac{\sin \dfrac{A}{2} }{\cos \dfrac{A}{2} } \right) }{1-\left( \dfrac{\sin \dfrac{A}{2} }{\cos \dfrac{A}{2} } \right) }$$
$$=\dfrac{1+\tan \dfrac{A}{2} }{1-\tan \dfrac{A}{2} }$$
$$=\dfrac{1+r}{1-r}$$ [since, $$\tan \dfrac{A}{2} =r$$]
Hence, the correct option is option C.
Note: While simplifying a big expression, try to express it in terms of one or two basic trigonometric functions, like we have transformed the above expression in terms of $cosine$ and $sine$, also try to find an order in the problem to apply trigonometric identities, properties and transformations.
Complete step-by-step solution:
Let the given expression as
$$S=\left( \sec A+\tan A\right) $$
$$=\left( \dfrac{1}{\cos A} +\dfrac{\sin A}{\cos A} \right) $$
$$=\left( \dfrac{1+\sin A}{\cos A} \right) $$
Now as we know that,
$$\cos \theta =\cos^{2} \dfrac{\theta }{2} -\sin^{2} \dfrac{\theta }{2}$$, and
$$\sin \theta =2\sin \dfrac{\theta }{2} \cos \dfrac{\theta }{2}$$
so by using this formula, we get,
$$S=\dfrac{1+2\sin \dfrac{A}{2} \cos \dfrac{A}{2} }{\cos^{2} \dfrac{A}{2} -\sin^{2} \dfrac{A}{2} }$$
$$=\dfrac{\sin^{2} \dfrac{A}{2} +\cos^{2} \dfrac{A}{2} +2\sin \dfrac{A}{2} \cos \dfrac{A}{2} }{\cos^{2} \dfrac{A}{2} -\sin^{2} \dfrac{A}{2} }$$ [ since, $$\sin^{2} \dfrac{A}{2} +\cos^{2} \dfrac{A}{2} =1$$]
As we know that,
$$a^{2}+2ab+b^{2}=\left( a+b\right)^{2} $$.......(1) and
$$a^{2}-b^{2}=\left( a+b\right) \left( a-b\right) $$.....(2),
so by applying identity (1) in numerator and identity (2) in denominator we get,
$$S=\dfrac{\left( \cos \dfrac{A}{2} +\sin \dfrac{A}{2} \right)^{2} }{\left( \cos \dfrac{A}{2} +\sin \dfrac{A}{2} \right) \left( \cos \dfrac{A}{2} -\sin \dfrac{A}{2} \right) }$$ [ taking $$a=\cos \dfrac{A}{2}$$ & $$b=\sin \dfrac{A}{2}$$]
$$=\dfrac{\left( \cos \dfrac{A}{2} +\sin \dfrac{A}{2} \right) }{\left( \cos \dfrac{A}{2} -\sin \dfrac{A}{2} \right) }$$
Now dividing numerator and denominator by $$\cos \dfrac{A}{2}$$, we get,
$$S=\dfrac{1+\left( \dfrac{\sin \dfrac{A}{2} }{\cos \dfrac{A}{2} } \right) }{1-\left( \dfrac{\sin \dfrac{A}{2} }{\cos \dfrac{A}{2} } \right) }$$
$$=\dfrac{1+\tan \dfrac{A}{2} }{1-\tan \dfrac{A}{2} }$$
$$=\dfrac{1+r}{1-r}$$ [since, $$\tan \dfrac{A}{2} =r$$]
Hence, the correct option is option C.
Note: While simplifying a big expression, try to express it in terms of one or two basic trigonometric functions, like we have transformed the above expression in terms of $cosine$ and $sine$, also try to find an order in the problem to apply trigonometric identities, properties and transformations.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
