
If, $\tan 9{}^\circ =\dfrac{x}{y}$ then, value of $\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }$ is
(A). $\dfrac{{{x}^{3}}}{{{y}^{3}}}$
(B). $\dfrac{{{x}^{4}}}{{{y}^{4}}}$
(C). $\dfrac{{{x}^{5}}}{{{y}^{5}}}$
(D). $\dfrac{{{y}^{2}}}{{{x}^{2}}}$
Answer
593.4k+ views
Hint: Take $\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }$, use $1+{{\cot }^{2}}\theta ={{\csc }^{2}}\theta $. After that, use $\dfrac{1}{\sin \theta }=\csc \theta $ and $\dfrac{1}{\cos \theta }=\sec \theta $.
Simplify it and use $\cot (90{}^\circ -\theta )=\tan \theta $. Try it, you will get the answer.
Complete step-by-step answer:
In question it is given that $\tan 9{}^\circ =\dfrac{x}{y}$ and we have to find the value of $\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }$.
We know that, $1+{{\cot }^{2}}\theta ={{\csc }^{2}}\theta $,
Now taking $\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }=\dfrac{{{\sec }^{2}}81{}^\circ }{{{\csc }^{2}}81{}^\circ }$
We know that, $\dfrac{1}{\sin \theta }=\csc \theta $ and $\dfrac{1}{\cos \theta }=\sec \theta $.
So we get,
$\begin{align}
& \dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }=\dfrac{{{\sec }^{2}}81{}^\circ }{{{\csc }^{2}}81{}^\circ } \\
& \Rightarrow \dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }=\dfrac{\dfrac{1}{{{\cos }^{2}}81{}^\circ }}{\dfrac{1}{{{\sin }^{2}}81{}^\circ }} \\
\end{align}$
Simplifying we get,
$\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }=\dfrac{\dfrac{1}{{{\cos }^{2}}81{}^\circ }}{\dfrac{1}{{{\sin }^{2}}81{}^\circ }}=\dfrac{{{\sin }^{2}}81{}^\circ }{{{\cos }^{2}}81{}^\circ }$
We know $\sin (90{}^\circ -\theta )=cos\theta ,cos(90{}^\circ -\theta )=sin\theta $, so above equation can be written as,
$\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }=\dfrac{{{\left[ \sin (90{}^\circ -9{}^\circ )\right]}^{2}}}{{{\left[ \cos (90{}^\circ -9{}^\circ ) \right]}^{2}}}=\dfrac{{{\cos }^{2}}9{}^\circ }{{{\sin}^{2}}9{}^\circ }={\cot}^2 9{}^\circ $
Here, $\tan 9{}^\circ =\dfrac{x}{y}$,
so substituting above we get,
$\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }={{\left( \dfrac{1}{\tan 9{}^\circ } \right)}^{2}}={{\left( \dfrac{y}{x} \right)}^{2}}=\dfrac{{{y}^{2}}}{{{x}^{2}}}$
Hence, the value of $\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }$ is $\dfrac{{{y}^{2}}}{{{x}^{2}}}$.
The correct answer is option(D).
Note: Read the question carefully. You should be thorough with the concept of trigonometry. While simplifying, do not miss any term. Don’t make silly mistakes. You should know the identities such as $1+{{\cot }^{2}}\theta ={{\csc }^{2}}\theta $, $\cot (90{}^\circ -\theta )=\tan \theta $, $\dfrac{1}{\sin \theta }=\csc \theta $etc. These all properties are used in the above problem.
Another approach is directly converting the given expression in terms of $9{}^\circ $ then simplify.
$\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }=\dfrac{\dfrac{1}{{{\cos }^{2}}(90{}^\circ -9{}^\circ )}}{1+{{\cot }^{2}}(90{}^\circ -9{}^\circ )}=\dfrac{\dfrac{1}{si{{n}^{2}}(9{}^\circ )}}{1+{{\tan }^{2}}(9{}^\circ )}=\dfrac{cs{{c}^{2}}(9{}^\circ )}{1+{{\tan }^{2}}(9{}^\circ )}$
In this method, you will get the same answer, but it will be tedious.
Simplify it and use $\cot (90{}^\circ -\theta )=\tan \theta $. Try it, you will get the answer.
Complete step-by-step answer:
In question it is given that $\tan 9{}^\circ =\dfrac{x}{y}$ and we have to find the value of $\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }$.
We know that, $1+{{\cot }^{2}}\theta ={{\csc }^{2}}\theta $,
Now taking $\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }=\dfrac{{{\sec }^{2}}81{}^\circ }{{{\csc }^{2}}81{}^\circ }$
We know that, $\dfrac{1}{\sin \theta }=\csc \theta $ and $\dfrac{1}{\cos \theta }=\sec \theta $.
So we get,
$\begin{align}
& \dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }=\dfrac{{{\sec }^{2}}81{}^\circ }{{{\csc }^{2}}81{}^\circ } \\
& \Rightarrow \dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }=\dfrac{\dfrac{1}{{{\cos }^{2}}81{}^\circ }}{\dfrac{1}{{{\sin }^{2}}81{}^\circ }} \\
\end{align}$
Simplifying we get,
$\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }=\dfrac{\dfrac{1}{{{\cos }^{2}}81{}^\circ }}{\dfrac{1}{{{\sin }^{2}}81{}^\circ }}=\dfrac{{{\sin }^{2}}81{}^\circ }{{{\cos }^{2}}81{}^\circ }$
We know $\sin (90{}^\circ -\theta )=cos\theta ,cos(90{}^\circ -\theta )=sin\theta $, so above equation can be written as,
$\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }=\dfrac{{{\left[ \sin (90{}^\circ -9{}^\circ )\right]}^{2}}}{{{\left[ \cos (90{}^\circ -9{}^\circ ) \right]}^{2}}}=\dfrac{{{\cos }^{2}}9{}^\circ }{{{\sin}^{2}}9{}^\circ }={\cot}^2 9{}^\circ $
Here, $\tan 9{}^\circ =\dfrac{x}{y}$,
so substituting above we get,
$\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }={{\left( \dfrac{1}{\tan 9{}^\circ } \right)}^{2}}={{\left( \dfrac{y}{x} \right)}^{2}}=\dfrac{{{y}^{2}}}{{{x}^{2}}}$
Hence, the value of $\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }$ is $\dfrac{{{y}^{2}}}{{{x}^{2}}}$.
The correct answer is option(D).
Note: Read the question carefully. You should be thorough with the concept of trigonometry. While simplifying, do not miss any term. Don’t make silly mistakes. You should know the identities such as $1+{{\cot }^{2}}\theta ={{\csc }^{2}}\theta $, $\cot (90{}^\circ -\theta )=\tan \theta $, $\dfrac{1}{\sin \theta }=\csc \theta $etc. These all properties are used in the above problem.
Another approach is directly converting the given expression in terms of $9{}^\circ $ then simplify.
$\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }=\dfrac{\dfrac{1}{{{\cos }^{2}}(90{}^\circ -9{}^\circ )}}{1+{{\cot }^{2}}(90{}^\circ -9{}^\circ )}=\dfrac{\dfrac{1}{si{{n}^{2}}(9{}^\circ )}}{1+{{\tan }^{2}}(9{}^\circ )}=\dfrac{cs{{c}^{2}}(9{}^\circ )}{1+{{\tan }^{2}}(9{}^\circ )}$
In this method, you will get the same answer, but it will be tedious.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

