
If, $\tan 9{}^\circ =\dfrac{x}{y}$ then, value of $\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }$ is
(A). $\dfrac{{{x}^{3}}}{{{y}^{3}}}$
(B). $\dfrac{{{x}^{4}}}{{{y}^{4}}}$
(C). $\dfrac{{{x}^{5}}}{{{y}^{5}}}$
(D). $\dfrac{{{y}^{2}}}{{{x}^{2}}}$
Answer
509.1k+ views
Hint: Take $\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }$, use $1+{{\cot }^{2}}\theta ={{\csc }^{2}}\theta $. After that, use $\dfrac{1}{\sin \theta }=\csc \theta $ and $\dfrac{1}{\cos \theta }=\sec \theta $.
Simplify it and use $\cot (90{}^\circ -\theta )=\tan \theta $. Try it, you will get the answer.
Complete step-by-step answer:
In question it is given that $\tan 9{}^\circ =\dfrac{x}{y}$ and we have to find the value of $\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }$.
We know that, $1+{{\cot }^{2}}\theta ={{\csc }^{2}}\theta $,
Now taking $\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }=\dfrac{{{\sec }^{2}}81{}^\circ }{{{\csc }^{2}}81{}^\circ }$
We know that, $\dfrac{1}{\sin \theta }=\csc \theta $ and $\dfrac{1}{\cos \theta }=\sec \theta $.
So we get,
$\begin{align}
& \dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }=\dfrac{{{\sec }^{2}}81{}^\circ }{{{\csc }^{2}}81{}^\circ } \\
& \Rightarrow \dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }=\dfrac{\dfrac{1}{{{\cos }^{2}}81{}^\circ }}{\dfrac{1}{{{\sin }^{2}}81{}^\circ }} \\
\end{align}$
Simplifying we get,
$\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }=\dfrac{\dfrac{1}{{{\cos }^{2}}81{}^\circ }}{\dfrac{1}{{{\sin }^{2}}81{}^\circ }}=\dfrac{{{\sin }^{2}}81{}^\circ }{{{\cos }^{2}}81{}^\circ }$
We know $\sin (90{}^\circ -\theta )=cos\theta ,cos(90{}^\circ -\theta )=sin\theta $, so above equation can be written as,
$\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }=\dfrac{{{\left[ \sin (90{}^\circ -9{}^\circ )\right]}^{2}}}{{{\left[ \cos (90{}^\circ -9{}^\circ ) \right]}^{2}}}=\dfrac{{{\cos }^{2}}9{}^\circ }{{{\sin}^{2}}9{}^\circ }={\cot}^2 9{}^\circ $
Here, $\tan 9{}^\circ =\dfrac{x}{y}$,
so substituting above we get,
$\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }={{\left( \dfrac{1}{\tan 9{}^\circ } \right)}^{2}}={{\left( \dfrac{y}{x} \right)}^{2}}=\dfrac{{{y}^{2}}}{{{x}^{2}}}$
Hence, the value of $\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }$ is $\dfrac{{{y}^{2}}}{{{x}^{2}}}$.
The correct answer is option(D).
Note: Read the question carefully. You should be thorough with the concept of trigonometry. While simplifying, do not miss any term. Don’t make silly mistakes. You should know the identities such as $1+{{\cot }^{2}}\theta ={{\csc }^{2}}\theta $, $\cot (90{}^\circ -\theta )=\tan \theta $, $\dfrac{1}{\sin \theta }=\csc \theta $etc. These all properties are used in the above problem.
Another approach is directly converting the given expression in terms of $9{}^\circ $ then simplify.
$\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }=\dfrac{\dfrac{1}{{{\cos }^{2}}(90{}^\circ -9{}^\circ )}}{1+{{\cot }^{2}}(90{}^\circ -9{}^\circ )}=\dfrac{\dfrac{1}{si{{n}^{2}}(9{}^\circ )}}{1+{{\tan }^{2}}(9{}^\circ )}=\dfrac{cs{{c}^{2}}(9{}^\circ )}{1+{{\tan }^{2}}(9{}^\circ )}$
In this method, you will get the same answer, but it will be tedious.
Simplify it and use $\cot (90{}^\circ -\theta )=\tan \theta $. Try it, you will get the answer.
Complete step-by-step answer:
In question it is given that $\tan 9{}^\circ =\dfrac{x}{y}$ and we have to find the value of $\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }$.
We know that, $1+{{\cot }^{2}}\theta ={{\csc }^{2}}\theta $,
Now taking $\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }=\dfrac{{{\sec }^{2}}81{}^\circ }{{{\csc }^{2}}81{}^\circ }$
We know that, $\dfrac{1}{\sin \theta }=\csc \theta $ and $\dfrac{1}{\cos \theta }=\sec \theta $.
So we get,
$\begin{align}
& \dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }=\dfrac{{{\sec }^{2}}81{}^\circ }{{{\csc }^{2}}81{}^\circ } \\
& \Rightarrow \dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }=\dfrac{\dfrac{1}{{{\cos }^{2}}81{}^\circ }}{\dfrac{1}{{{\sin }^{2}}81{}^\circ }} \\
\end{align}$
Simplifying we get,
$\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }=\dfrac{\dfrac{1}{{{\cos }^{2}}81{}^\circ }}{\dfrac{1}{{{\sin }^{2}}81{}^\circ }}=\dfrac{{{\sin }^{2}}81{}^\circ }{{{\cos }^{2}}81{}^\circ }$
We know $\sin (90{}^\circ -\theta )=cos\theta ,cos(90{}^\circ -\theta )=sin\theta $, so above equation can be written as,
$\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }=\dfrac{{{\left[ \sin (90{}^\circ -9{}^\circ )\right]}^{2}}}{{{\left[ \cos (90{}^\circ -9{}^\circ ) \right]}^{2}}}=\dfrac{{{\cos }^{2}}9{}^\circ }{{{\sin}^{2}}9{}^\circ }={\cot}^2 9{}^\circ $
Here, $\tan 9{}^\circ =\dfrac{x}{y}$,
so substituting above we get,
$\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }={{\left( \dfrac{1}{\tan 9{}^\circ } \right)}^{2}}={{\left( \dfrac{y}{x} \right)}^{2}}=\dfrac{{{y}^{2}}}{{{x}^{2}}}$
Hence, the value of $\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }$ is $\dfrac{{{y}^{2}}}{{{x}^{2}}}$.
The correct answer is option(D).
Note: Read the question carefully. You should be thorough with the concept of trigonometry. While simplifying, do not miss any term. Don’t make silly mistakes. You should know the identities such as $1+{{\cot }^{2}}\theta ={{\csc }^{2}}\theta $, $\cot (90{}^\circ -\theta )=\tan \theta $, $\dfrac{1}{\sin \theta }=\csc \theta $etc. These all properties are used in the above problem.
Another approach is directly converting the given expression in terms of $9{}^\circ $ then simplify.
$\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }=\dfrac{\dfrac{1}{{{\cos }^{2}}(90{}^\circ -9{}^\circ )}}{1+{{\cot }^{2}}(90{}^\circ -9{}^\circ )}=\dfrac{\dfrac{1}{si{{n}^{2}}(9{}^\circ )}}{1+{{\tan }^{2}}(9{}^\circ )}=\dfrac{cs{{c}^{2}}(9{}^\circ )}{1+{{\tan }^{2}}(9{}^\circ )}$
In this method, you will get the same answer, but it will be tedious.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

Arrange Water ethanol and phenol in increasing order class 11 chemistry CBSE

Name the nuclear plant located in Uttar Pradesh class 11 social science CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

A mixture of o nitrophenol and p nitrophenol can be class 11 chemistry CBSE
