
If, $\tan 9{}^\circ =\dfrac{x}{y}$ then, value of $\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }$ is
(A). $\dfrac{{{x}^{3}}}{{{y}^{3}}}$
(B). $\dfrac{{{x}^{4}}}{{{y}^{4}}}$
(C). $\dfrac{{{x}^{5}}}{{{y}^{5}}}$
(D). $\dfrac{{{y}^{2}}}{{{x}^{2}}}$
Answer
608.1k+ views
Hint: Take $\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }$, use $1+{{\cot }^{2}}\theta ={{\csc }^{2}}\theta $. After that, use $\dfrac{1}{\sin \theta }=\csc \theta $ and $\dfrac{1}{\cos \theta }=\sec \theta $.
Simplify it and use $\cot (90{}^\circ -\theta )=\tan \theta $. Try it, you will get the answer.
Complete step-by-step answer:
In question it is given that $\tan 9{}^\circ =\dfrac{x}{y}$ and we have to find the value of $\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }$.
We know that, $1+{{\cot }^{2}}\theta ={{\csc }^{2}}\theta $,
Now taking $\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }=\dfrac{{{\sec }^{2}}81{}^\circ }{{{\csc }^{2}}81{}^\circ }$
We know that, $\dfrac{1}{\sin \theta }=\csc \theta $ and $\dfrac{1}{\cos \theta }=\sec \theta $.
So we get,
$\begin{align}
& \dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }=\dfrac{{{\sec }^{2}}81{}^\circ }{{{\csc }^{2}}81{}^\circ } \\
& \Rightarrow \dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }=\dfrac{\dfrac{1}{{{\cos }^{2}}81{}^\circ }}{\dfrac{1}{{{\sin }^{2}}81{}^\circ }} \\
\end{align}$
Simplifying we get,
$\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }=\dfrac{\dfrac{1}{{{\cos }^{2}}81{}^\circ }}{\dfrac{1}{{{\sin }^{2}}81{}^\circ }}=\dfrac{{{\sin }^{2}}81{}^\circ }{{{\cos }^{2}}81{}^\circ }$
We know $\sin (90{}^\circ -\theta )=cos\theta ,cos(90{}^\circ -\theta )=sin\theta $, so above equation can be written as,
$\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }=\dfrac{{{\left[ \sin (90{}^\circ -9{}^\circ )\right]}^{2}}}{{{\left[ \cos (90{}^\circ -9{}^\circ ) \right]}^{2}}}=\dfrac{{{\cos }^{2}}9{}^\circ }{{{\sin}^{2}}9{}^\circ }={\cot}^2 9{}^\circ $
Here, $\tan 9{}^\circ =\dfrac{x}{y}$,
so substituting above we get,
$\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }={{\left( \dfrac{1}{\tan 9{}^\circ } \right)}^{2}}={{\left( \dfrac{y}{x} \right)}^{2}}=\dfrac{{{y}^{2}}}{{{x}^{2}}}$
Hence, the value of $\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }$ is $\dfrac{{{y}^{2}}}{{{x}^{2}}}$.
The correct answer is option(D).
Note: Read the question carefully. You should be thorough with the concept of trigonometry. While simplifying, do not miss any term. Don’t make silly mistakes. You should know the identities such as $1+{{\cot }^{2}}\theta ={{\csc }^{2}}\theta $, $\cot (90{}^\circ -\theta )=\tan \theta $, $\dfrac{1}{\sin \theta }=\csc \theta $etc. These all properties are used in the above problem.
Another approach is directly converting the given expression in terms of $9{}^\circ $ then simplify.
$\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }=\dfrac{\dfrac{1}{{{\cos }^{2}}(90{}^\circ -9{}^\circ )}}{1+{{\cot }^{2}}(90{}^\circ -9{}^\circ )}=\dfrac{\dfrac{1}{si{{n}^{2}}(9{}^\circ )}}{1+{{\tan }^{2}}(9{}^\circ )}=\dfrac{cs{{c}^{2}}(9{}^\circ )}{1+{{\tan }^{2}}(9{}^\circ )}$
In this method, you will get the same answer, but it will be tedious.
Simplify it and use $\cot (90{}^\circ -\theta )=\tan \theta $. Try it, you will get the answer.
Complete step-by-step answer:
In question it is given that $\tan 9{}^\circ =\dfrac{x}{y}$ and we have to find the value of $\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }$.
We know that, $1+{{\cot }^{2}}\theta ={{\csc }^{2}}\theta $,
Now taking $\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }=\dfrac{{{\sec }^{2}}81{}^\circ }{{{\csc }^{2}}81{}^\circ }$
We know that, $\dfrac{1}{\sin \theta }=\csc \theta $ and $\dfrac{1}{\cos \theta }=\sec \theta $.
So we get,
$\begin{align}
& \dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }=\dfrac{{{\sec }^{2}}81{}^\circ }{{{\csc }^{2}}81{}^\circ } \\
& \Rightarrow \dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }=\dfrac{\dfrac{1}{{{\cos }^{2}}81{}^\circ }}{\dfrac{1}{{{\sin }^{2}}81{}^\circ }} \\
\end{align}$
Simplifying we get,
$\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }=\dfrac{\dfrac{1}{{{\cos }^{2}}81{}^\circ }}{\dfrac{1}{{{\sin }^{2}}81{}^\circ }}=\dfrac{{{\sin }^{2}}81{}^\circ }{{{\cos }^{2}}81{}^\circ }$
We know $\sin (90{}^\circ -\theta )=cos\theta ,cos(90{}^\circ -\theta )=sin\theta $, so above equation can be written as,
$\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }=\dfrac{{{\left[ \sin (90{}^\circ -9{}^\circ )\right]}^{2}}}{{{\left[ \cos (90{}^\circ -9{}^\circ ) \right]}^{2}}}=\dfrac{{{\cos }^{2}}9{}^\circ }{{{\sin}^{2}}9{}^\circ }={\cot}^2 9{}^\circ $
Here, $\tan 9{}^\circ =\dfrac{x}{y}$,
so substituting above we get,
$\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }={{\left( \dfrac{1}{\tan 9{}^\circ } \right)}^{2}}={{\left( \dfrac{y}{x} \right)}^{2}}=\dfrac{{{y}^{2}}}{{{x}^{2}}}$
Hence, the value of $\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }$ is $\dfrac{{{y}^{2}}}{{{x}^{2}}}$.
The correct answer is option(D).
Note: Read the question carefully. You should be thorough with the concept of trigonometry. While simplifying, do not miss any term. Don’t make silly mistakes. You should know the identities such as $1+{{\cot }^{2}}\theta ={{\csc }^{2}}\theta $, $\cot (90{}^\circ -\theta )=\tan \theta $, $\dfrac{1}{\sin \theta }=\csc \theta $etc. These all properties are used in the above problem.
Another approach is directly converting the given expression in terms of $9{}^\circ $ then simplify.
$\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }=\dfrac{\dfrac{1}{{{\cos }^{2}}(90{}^\circ -9{}^\circ )}}{1+{{\cot }^{2}}(90{}^\circ -9{}^\circ )}=\dfrac{\dfrac{1}{si{{n}^{2}}(9{}^\circ )}}{1+{{\tan }^{2}}(9{}^\circ )}=\dfrac{cs{{c}^{2}}(9{}^\circ )}{1+{{\tan }^{2}}(9{}^\circ )}$
In this method, you will get the same answer, but it will be tedious.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

