If \[\tan 5x = \cot 3x\,\]then \[x = (n \in z)\]
Answer
Verified
478.5k+ views
Hint: Trigonometric functions describe the relation between the sides and angles of a right triangle. ... The trigonometric functions include the following 6 functions: sine, cosine, tangent, cotangent, secant, and cosecant. For each of these functions, there is an inverse trigonometric function.
Always convert All the Trigonometric Function into the same function.
As to convert \[\tan x\] into \[\cot x\] the following ways are :
\[\cot x = \tan (\dfrac{\pi }{2} - y)\]
Formula for \[\tan \theta = \tan \alpha \] this is the solution.
\[ \Rightarrow \theta = n\pi + \alpha \]
Complete step-by- step solution:
Given \[\tan 5x = \cot 3x\]
Changing the \[cot\theta \]into \[tan\theta \] by writing \[cot\theta \]= \[tan\theta \]
Where \[\theta = 3x\]
\[\tan 5x = \tan (\dfrac{\pi }{2} - 3x)\]
For General formula of \[tan{\text{ }}x,\] when \[tan\theta = tan{\text{ }}\alpha \]
Then, \[\theta = n\pi {\text{ }} + \alpha \]
$\Rightarrow$\[5x = n\pi + \dfrac{\pi }{2} - 3x\]
Now on shifting \[\pi /2\] on right side we get
$\Rightarrow$\[5x + 3x = n\pi + \dfrac{\pi }{2}\]
$\Rightarrow$\[8x = n\pi + \dfrac{\pi }{2}\]
Now on taking L.CM for the above term where L.C.M = 2 we get
$\Rightarrow$\[8x = \dfrac{{2n\pi + \pi }}{2}\]
Transposing 2 to left side and multiply with 8 we get
$\Rightarrow$\[8x \times 2 = 2n\pi + \pi \]
$\Rightarrow$\[16x = 2n\pi + \pi \]
Transposing 16 on right side as denominator
$\Rightarrow$\[x = \dfrac{1}{{16}}(2\pi n + \pi )\]
Hence Required value of \[x = \dfrac{1}{{16}}(2n\pi + \pi )\]
Or \[x = \dfrac{\pi }{{16}}(2n + 1)\] [Taking \[\pi \] common]
Note: Explanation for General solution of \[\tan \theta \]\[ = \tan \alpha \] is given by \[\theta = n\pi + \alpha ,\,n \in z\].
As follows,
\[\tan \theta = \tan \alpha \]
We know \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]
$\Rightarrow$ \[\dfrac{{\sin \theta }}{{\cos \theta }} = \dfrac{{\sin \alpha }}{{\cos \alpha }}\]
Taking \[\dfrac{{\sin \alpha }}{{\cos \alpha }}\] to L.H.S we get
$\Rightarrow$ \[\dfrac{{\sin \theta }}{{\cos \theta }} - \dfrac{{\sin \alpha }}{{\cos \alpha }} = 0\]
On taking taking LCM we get
$\Rightarrow$\[\dfrac{{\sin \theta \cos \alpha - \sin \alpha \cos \theta }}{{\cos \theta \cos \alpha }} = 0\]
$\Rightarrow$\[\therefore \cos \theta \cos \alpha \times 0 = 0\]
$\Rightarrow$\[\sin \theta \cos \alpha - \sin \alpha \cos \theta = 0\]
Identity: \[\sin \theta \cos \alpha - \sin \alpha \cos \theta \] ,\[\sin (\theta - \alpha )\]
\[\sin (\theta - \alpha ) = 0\]
\[ \Rightarrow \theta - \alpha = n\pi \], where \[n \in z\] i.e. \[(n = 0, \pm 1, \pm 2, \pm 3.....)\].
(since we know that \[\theta = n\pi ,n \in z\] is the general solution of the given equation \[\sin \theta = 0\]).
\[ \Rightarrow \theta = n\pi + \alpha ,\] where \[n \in z\] (i.e. \[n = 0,\,\, \pm 1,\,\,\, \pm 2,\,\, \pm 3).\]
Always convert All the Trigonometric Function into the same function.
As to convert \[\tan x\] into \[\cot x\] the following ways are :
\[\cot x = \tan (\dfrac{\pi }{2} - y)\]
Formula for \[\tan \theta = \tan \alpha \] this is the solution.
\[ \Rightarrow \theta = n\pi + \alpha \]
Complete step-by- step solution:
Given \[\tan 5x = \cot 3x\]
Changing the \[cot\theta \]into \[tan\theta \] by writing \[cot\theta \]= \[tan\theta \]
Where \[\theta = 3x\]
\[\tan 5x = \tan (\dfrac{\pi }{2} - 3x)\]
For General formula of \[tan{\text{ }}x,\] when \[tan\theta = tan{\text{ }}\alpha \]
Then, \[\theta = n\pi {\text{ }} + \alpha \]
$\Rightarrow$\[5x = n\pi + \dfrac{\pi }{2} - 3x\]
Now on shifting \[\pi /2\] on right side we get
$\Rightarrow$\[5x + 3x = n\pi + \dfrac{\pi }{2}\]
$\Rightarrow$\[8x = n\pi + \dfrac{\pi }{2}\]
Now on taking L.CM for the above term where L.C.M = 2 we get
$\Rightarrow$\[8x = \dfrac{{2n\pi + \pi }}{2}\]
Transposing 2 to left side and multiply with 8 we get
$\Rightarrow$\[8x \times 2 = 2n\pi + \pi \]
$\Rightarrow$\[16x = 2n\pi + \pi \]
Transposing 16 on right side as denominator
$\Rightarrow$\[x = \dfrac{1}{{16}}(2\pi n + \pi )\]
Hence Required value of \[x = \dfrac{1}{{16}}(2n\pi + \pi )\]
Or \[x = \dfrac{\pi }{{16}}(2n + 1)\] [Taking \[\pi \] common]
Note: Explanation for General solution of \[\tan \theta \]\[ = \tan \alpha \] is given by \[\theta = n\pi + \alpha ,\,n \in z\].
As follows,
\[\tan \theta = \tan \alpha \]
We know \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]
$\Rightarrow$ \[\dfrac{{\sin \theta }}{{\cos \theta }} = \dfrac{{\sin \alpha }}{{\cos \alpha }}\]
Taking \[\dfrac{{\sin \alpha }}{{\cos \alpha }}\] to L.H.S we get
$\Rightarrow$ \[\dfrac{{\sin \theta }}{{\cos \theta }} - \dfrac{{\sin \alpha }}{{\cos \alpha }} = 0\]
On taking taking LCM we get
$\Rightarrow$\[\dfrac{{\sin \theta \cos \alpha - \sin \alpha \cos \theta }}{{\cos \theta \cos \alpha }} = 0\]
$\Rightarrow$\[\therefore \cos \theta \cos \alpha \times 0 = 0\]
$\Rightarrow$\[\sin \theta \cos \alpha - \sin \alpha \cos \theta = 0\]
Identity: \[\sin \theta \cos \alpha - \sin \alpha \cos \theta \] ,\[\sin (\theta - \alpha )\]
\[\sin (\theta - \alpha ) = 0\]
\[ \Rightarrow \theta - \alpha = n\pi \], where \[n \in z\] i.e. \[(n = 0, \pm 1, \pm 2, \pm 3.....)\].
(since we know that \[\theta = n\pi ,n \in z\] is the general solution of the given equation \[\sin \theta = 0\]).
\[ \Rightarrow \theta = n\pi + \alpha ,\] where \[n \in z\] (i.e. \[n = 0,\,\, \pm 1,\,\,\, \pm 2,\,\, \pm 3).\]
Recently Updated Pages
How to find how many moles are in an ion I am given class 11 chemistry CBSE
Class 11 Question and Answer - Your Ultimate Solutions Guide
Identify how many lines of symmetry drawn are there class 8 maths CBSE
State true or false If two lines intersect and if one class 8 maths CBSE
Tina had 20m 5cm long cloth She cuts 4m 50cm lengt-class-8-maths-CBSE
Which sentence is punctuated correctly A Always ask class 8 english CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE