Answer
Verified
440.7k+ views
Hint: Trigonometric functions describe the relation between the sides and angles of a right triangle. ... The trigonometric functions include the following 6 functions: sine, cosine, tangent, cotangent, secant, and cosecant. For each of these functions, there is an inverse trigonometric function.
Always convert All the Trigonometric Function into the same function.
As to convert \[\tan x\] into \[\cot x\] the following ways are :
\[\cot x = \tan (\dfrac{\pi }{2} - y)\]
Formula for \[\tan \theta = \tan \alpha \] this is the solution.
\[ \Rightarrow \theta = n\pi + \alpha \]
Complete step-by- step solution:
Given \[\tan 5x = \cot 3x\]
Changing the \[cot\theta \]into \[tan\theta \] by writing \[cot\theta \]= \[tan\theta \]
Where \[\theta = 3x\]
\[\tan 5x = \tan (\dfrac{\pi }{2} - 3x)\]
For General formula of \[tan{\text{ }}x,\] when \[tan\theta = tan{\text{ }}\alpha \]
Then, \[\theta = n\pi {\text{ }} + \alpha \]
$\Rightarrow$\[5x = n\pi + \dfrac{\pi }{2} - 3x\]
Now on shifting \[\pi /2\] on right side we get
$\Rightarrow$\[5x + 3x = n\pi + \dfrac{\pi }{2}\]
$\Rightarrow$\[8x = n\pi + \dfrac{\pi }{2}\]
Now on taking L.CM for the above term where L.C.M = 2 we get
$\Rightarrow$\[8x = \dfrac{{2n\pi + \pi }}{2}\]
Transposing 2 to left side and multiply with 8 we get
$\Rightarrow$\[8x \times 2 = 2n\pi + \pi \]
$\Rightarrow$\[16x = 2n\pi + \pi \]
Transposing 16 on right side as denominator
$\Rightarrow$\[x = \dfrac{1}{{16}}(2\pi n + \pi )\]
Hence Required value of \[x = \dfrac{1}{{16}}(2n\pi + \pi )\]
Or \[x = \dfrac{\pi }{{16}}(2n + 1)\] [Taking \[\pi \] common]
Note: Explanation for General solution of \[\tan \theta \]\[ = \tan \alpha \] is given by \[\theta = n\pi + \alpha ,\,n \in z\].
As follows,
\[\tan \theta = \tan \alpha \]
We know \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]
$\Rightarrow$ \[\dfrac{{\sin \theta }}{{\cos \theta }} = \dfrac{{\sin \alpha }}{{\cos \alpha }}\]
Taking \[\dfrac{{\sin \alpha }}{{\cos \alpha }}\] to L.H.S we get
$\Rightarrow$ \[\dfrac{{\sin \theta }}{{\cos \theta }} - \dfrac{{\sin \alpha }}{{\cos \alpha }} = 0\]
On taking taking LCM we get
$\Rightarrow$\[\dfrac{{\sin \theta \cos \alpha - \sin \alpha \cos \theta }}{{\cos \theta \cos \alpha }} = 0\]
$\Rightarrow$\[\therefore \cos \theta \cos \alpha \times 0 = 0\]
$\Rightarrow$\[\sin \theta \cos \alpha - \sin \alpha \cos \theta = 0\]
Identity: \[\sin \theta \cos \alpha - \sin \alpha \cos \theta \] ,\[\sin (\theta - \alpha )\]
\[\sin (\theta - \alpha ) = 0\]
\[ \Rightarrow \theta - \alpha = n\pi \], where \[n \in z\] i.e. \[(n = 0, \pm 1, \pm 2, \pm 3.....)\].
(since we know that \[\theta = n\pi ,n \in z\] is the general solution of the given equation \[\sin \theta = 0\]).
\[ \Rightarrow \theta = n\pi + \alpha ,\] where \[n \in z\] (i.e. \[n = 0,\,\, \pm 1,\,\,\, \pm 2,\,\, \pm 3).\]
Always convert All the Trigonometric Function into the same function.
As to convert \[\tan x\] into \[\cot x\] the following ways are :
\[\cot x = \tan (\dfrac{\pi }{2} - y)\]
Formula for \[\tan \theta = \tan \alpha \] this is the solution.
\[ \Rightarrow \theta = n\pi + \alpha \]
Complete step-by- step solution:
Given \[\tan 5x = \cot 3x\]
Changing the \[cot\theta \]into \[tan\theta \] by writing \[cot\theta \]= \[tan\theta \]
Where \[\theta = 3x\]
\[\tan 5x = \tan (\dfrac{\pi }{2} - 3x)\]
For General formula of \[tan{\text{ }}x,\] when \[tan\theta = tan{\text{ }}\alpha \]
Then, \[\theta = n\pi {\text{ }} + \alpha \]
$\Rightarrow$\[5x = n\pi + \dfrac{\pi }{2} - 3x\]
Now on shifting \[\pi /2\] on right side we get
$\Rightarrow$\[5x + 3x = n\pi + \dfrac{\pi }{2}\]
$\Rightarrow$\[8x = n\pi + \dfrac{\pi }{2}\]
Now on taking L.CM for the above term where L.C.M = 2 we get
$\Rightarrow$\[8x = \dfrac{{2n\pi + \pi }}{2}\]
Transposing 2 to left side and multiply with 8 we get
$\Rightarrow$\[8x \times 2 = 2n\pi + \pi \]
$\Rightarrow$\[16x = 2n\pi + \pi \]
Transposing 16 on right side as denominator
$\Rightarrow$\[x = \dfrac{1}{{16}}(2\pi n + \pi )\]
Hence Required value of \[x = \dfrac{1}{{16}}(2n\pi + \pi )\]
Or \[x = \dfrac{\pi }{{16}}(2n + 1)\] [Taking \[\pi \] common]
Note: Explanation for General solution of \[\tan \theta \]\[ = \tan \alpha \] is given by \[\theta = n\pi + \alpha ,\,n \in z\].
As follows,
\[\tan \theta = \tan \alpha \]
We know \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]
$\Rightarrow$ \[\dfrac{{\sin \theta }}{{\cos \theta }} = \dfrac{{\sin \alpha }}{{\cos \alpha }}\]
Taking \[\dfrac{{\sin \alpha }}{{\cos \alpha }}\] to L.H.S we get
$\Rightarrow$ \[\dfrac{{\sin \theta }}{{\cos \theta }} - \dfrac{{\sin \alpha }}{{\cos \alpha }} = 0\]
On taking taking LCM we get
$\Rightarrow$\[\dfrac{{\sin \theta \cos \alpha - \sin \alpha \cos \theta }}{{\cos \theta \cos \alpha }} = 0\]
$\Rightarrow$\[\therefore \cos \theta \cos \alpha \times 0 = 0\]
$\Rightarrow$\[\sin \theta \cos \alpha - \sin \alpha \cos \theta = 0\]
Identity: \[\sin \theta \cos \alpha - \sin \alpha \cos \theta \] ,\[\sin (\theta - \alpha )\]
\[\sin (\theta - \alpha ) = 0\]
\[ \Rightarrow \theta - \alpha = n\pi \], where \[n \in z\] i.e. \[(n = 0, \pm 1, \pm 2, \pm 3.....)\].
(since we know that \[\theta = n\pi ,n \in z\] is the general solution of the given equation \[\sin \theta = 0\]).
\[ \Rightarrow \theta = n\pi + \alpha ,\] where \[n \in z\] (i.e. \[n = 0,\,\, \pm 1,\,\,\, \pm 2,\,\, \pm 3).\]
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference Between Plant Cell and Animal Cell
Which are the Top 10 Largest Countries of the World?
Write a letter to the principal requesting him to grant class 10 english CBSE
10 examples of evaporation in daily life with explanations
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE