
If ${\tan ^2}\theta = 1 - {a^2}$ ,prove that $\sec \theta + {\tan ^3}\theta \cos ec\theta = {\left( {2 - {a^2}} \right)^{\dfrac{3}{2}}}$
Answer
554.7k+ views
Hint:
Considering the left hand side , first taking $\sec \theta $ common and replacing$\sec \theta = \dfrac{1}{{\cos \theta }}{\text{ and }}\cos ec\theta = \dfrac{1}{{\sin \theta }}$ we get an equation in which we can further replace ${\tan ^3}\theta = \dfrac{{{{\sin }^3}\theta }}{{{{\cos }^3}\theta }}$ and then by using the identity ${\sec ^2}\theta - {\tan ^2}\theta = 1$ we can find the value of $\sec \theta $. And using the given statement ${\tan ^2}\theta = 1 - {a^2}$ we get our right hand side.
Complete step by step solution:
Here we are give that ${\tan ^2}\theta = 1 - {a^2}$……….(1)
We are asked to prove $\sec \theta + {\tan ^3}\theta \cos ec\theta = {\left( {2 - {a^2}} \right)^{\dfrac{3}{2}}}$
So now lets start with our left hand side
$ \Rightarrow \sec \theta + {\tan ^3}\theta \cos ec\theta $
At first lets multiply and divide by $\sec \theta $
$
\Rightarrow \dfrac{{\sec \theta }}{{\sec \theta }}\left[ {\sec \theta + {{\tan }^3}\theta \cos ec\theta } \right] \\
\Rightarrow \sec \theta \left[ {\dfrac{{\sec \theta + {{\tan }^3}\theta \cos ec\theta }}{{\sec \theta }}} \right] \\
\Rightarrow \sec \theta \left[ {1 + \dfrac{{{{\tan }^3}\theta \cos ec\theta }}{{\sec \theta }}} \right] \\
$
We know that $\sec \theta = \dfrac{1}{{\cos \theta }}{\text{ and }}\cos ec\theta = \dfrac{1}{{\sin \theta }}$
Using this in the above equation we get
$
\Rightarrow \sec \theta \left[ {1 + \dfrac{{{{\tan }^3}\theta \dfrac{1}{{\sin \theta }}}}{{\dfrac{1}{{\cos \theta }}}}} \right] \\
\Rightarrow \sec \theta \left[ {1 + {{\tan }^3}\theta \dfrac{{\cos \theta }}{{\sin \theta }}} \right] \\
$
Once again since $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ we can write ${\tan ^3}\theta = \dfrac{{{{\sin }^3}\theta }}{{{{\cos }^3}\theta }}$
Using this in the above equation we get
$
\Rightarrow \sec \theta \left[ {1 + \dfrac{{{{\sin }^3}\theta }}{{{{\cos }^3}\theta }}\dfrac{{\cos \theta }}{{\sin \theta }}} \right] \\
\Rightarrow \sec \theta \left[ {1 + \dfrac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }}} \right] \\
\Rightarrow \sec \theta \left[ {1 + {{\tan }^2}\theta } \right] \\
$
Let the above equation be (2)
we know the identity ${\sec ^2}\theta - {\tan ^2}\theta = 1$
from this we can get the value of $\sec \theta $
$
\Rightarrow {\sec ^2}\theta = 1 + {\tan ^2}\theta \\
\Rightarrow \sec \theta = \sqrt {1 + {{\tan }^2}\theta } \\
$
Now let's use this in equation (2)
$
\Rightarrow \sqrt {1 + {{\tan }^2}\theta } \left[ {1 + {{\tan }^2}\theta } \right] \\
\Rightarrow {\left( {1 + {{\tan }^2}\theta } \right)^{\dfrac{1}{2}}}\left[ {1 + {{\tan }^2}\theta } \right] \\
$
Since the base is the same we can add up the powers
$ \Rightarrow {\left( {1 + {{\tan }^2}\theta } \right)^{\dfrac{3}{2}}}$
From equation (1) we have ${\tan ^2}\theta = 1 - {a^2}$
Using this we get
$
\Rightarrow {\left( {1 + \left( {1 - {a^2}} \right)} \right)^{\dfrac{3}{2}}} \\
\Rightarrow {\left( {1 + 1 - {a^2}} \right)^{\dfrac{3}{2}}} \\
\Rightarrow {\left( {2 - {a^2}} \right)^{\dfrac{3}{2}}} \\
$
Hence we have obtained the right hand side .
Hence proved
Note:
Steps to keep in mind while solving trigonometric problems are
1) Always start from the more complex side
2) Express everything into sine and cosine
3) Combine terms into a single fraction
4) Use Pythagorean identities to transform between ${\sin ^2}x{\text{ and }}{\cos ^2}x$
5) Know when to apply double angle formula
6) Know when to apply addition formula
7) Good old expand/ factorize/ simplify/ cancelling
Considering the left hand side , first taking $\sec \theta $ common and replacing$\sec \theta = \dfrac{1}{{\cos \theta }}{\text{ and }}\cos ec\theta = \dfrac{1}{{\sin \theta }}$ we get an equation in which we can further replace ${\tan ^3}\theta = \dfrac{{{{\sin }^3}\theta }}{{{{\cos }^3}\theta }}$ and then by using the identity ${\sec ^2}\theta - {\tan ^2}\theta = 1$ we can find the value of $\sec \theta $. And using the given statement ${\tan ^2}\theta = 1 - {a^2}$ we get our right hand side.
Complete step by step solution:
Here we are give that ${\tan ^2}\theta = 1 - {a^2}$……….(1)
We are asked to prove $\sec \theta + {\tan ^3}\theta \cos ec\theta = {\left( {2 - {a^2}} \right)^{\dfrac{3}{2}}}$
So now lets start with our left hand side
$ \Rightarrow \sec \theta + {\tan ^3}\theta \cos ec\theta $
At first lets multiply and divide by $\sec \theta $
$
\Rightarrow \dfrac{{\sec \theta }}{{\sec \theta }}\left[ {\sec \theta + {{\tan }^3}\theta \cos ec\theta } \right] \\
\Rightarrow \sec \theta \left[ {\dfrac{{\sec \theta + {{\tan }^3}\theta \cos ec\theta }}{{\sec \theta }}} \right] \\
\Rightarrow \sec \theta \left[ {1 + \dfrac{{{{\tan }^3}\theta \cos ec\theta }}{{\sec \theta }}} \right] \\
$
We know that $\sec \theta = \dfrac{1}{{\cos \theta }}{\text{ and }}\cos ec\theta = \dfrac{1}{{\sin \theta }}$
Using this in the above equation we get
$
\Rightarrow \sec \theta \left[ {1 + \dfrac{{{{\tan }^3}\theta \dfrac{1}{{\sin \theta }}}}{{\dfrac{1}{{\cos \theta }}}}} \right] \\
\Rightarrow \sec \theta \left[ {1 + {{\tan }^3}\theta \dfrac{{\cos \theta }}{{\sin \theta }}} \right] \\
$
Once again since $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ we can write ${\tan ^3}\theta = \dfrac{{{{\sin }^3}\theta }}{{{{\cos }^3}\theta }}$
Using this in the above equation we get
$
\Rightarrow \sec \theta \left[ {1 + \dfrac{{{{\sin }^3}\theta }}{{{{\cos }^3}\theta }}\dfrac{{\cos \theta }}{{\sin \theta }}} \right] \\
\Rightarrow \sec \theta \left[ {1 + \dfrac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }}} \right] \\
\Rightarrow \sec \theta \left[ {1 + {{\tan }^2}\theta } \right] \\
$
Let the above equation be (2)
we know the identity ${\sec ^2}\theta - {\tan ^2}\theta = 1$
from this we can get the value of $\sec \theta $
$
\Rightarrow {\sec ^2}\theta = 1 + {\tan ^2}\theta \\
\Rightarrow \sec \theta = \sqrt {1 + {{\tan }^2}\theta } \\
$
Now let's use this in equation (2)
$
\Rightarrow \sqrt {1 + {{\tan }^2}\theta } \left[ {1 + {{\tan }^2}\theta } \right] \\
\Rightarrow {\left( {1 + {{\tan }^2}\theta } \right)^{\dfrac{1}{2}}}\left[ {1 + {{\tan }^2}\theta } \right] \\
$
Since the base is the same we can add up the powers
$ \Rightarrow {\left( {1 + {{\tan }^2}\theta } \right)^{\dfrac{3}{2}}}$
From equation (1) we have ${\tan ^2}\theta = 1 - {a^2}$
Using this we get
$
\Rightarrow {\left( {1 + \left( {1 - {a^2}} \right)} \right)^{\dfrac{3}{2}}} \\
\Rightarrow {\left( {1 + 1 - {a^2}} \right)^{\dfrac{3}{2}}} \\
\Rightarrow {\left( {2 - {a^2}} \right)^{\dfrac{3}{2}}} \\
$
Hence we have obtained the right hand side .
Hence proved
Note:
Steps to keep in mind while solving trigonometric problems are
1) Always start from the more complex side
2) Express everything into sine and cosine
3) Combine terms into a single fraction
4) Use Pythagorean identities to transform between ${\sin ^2}x{\text{ and }}{\cos ^2}x$
5) Know when to apply double angle formula
6) Know when to apply addition formula
7) Good old expand/ factorize/ simplify/ cancelling
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

