
If \[\tan {{20}^{\circ }}=\lambda \], then show that \[\dfrac{\tan {{160}^{\circ }}-\tan {{110}^{\circ }}}{1+\tan {{160}^{\circ }}.\tan {{110}^{\circ }}}=\dfrac{1-{{\lambda }^{2}}}{2\lambda }\].
Answer
588k+ views
Hint: Find the value of \[\tan {{160}^{\circ }}\] & \[\tan {{110}^{\circ }}\] in terms of \[\tan {{20}^{\circ }}\] using the trigonometric functions \[\tan \left( 180-\theta \right)\] and \[\tan \left( 90+\theta \right)\]. Replace the values in L.H.S of the expression, put \[\tan {{20}^{\circ }}=\lambda \] and simplify it.
Complete step-by-step answer:
We are given the tangent function, \[\tan {{20}^{\circ }}=\lambda \].
We need to show that,
\[\Rightarrow \dfrac{\tan {{160}^{\circ }}-\tan {{110}^{\circ }}}{1+\tan {{160}^{\circ }}.\tan {{110}^{\circ }}}=\dfrac{1-{{\lambda }^{2}}}{2\lambda }\]
We know the basic trigonometric function such as,
\[\Rightarrow \tan \left( 180-\theta \right)=-\tan \theta \]
Similarly, \[\tan \left( 90+\theta \right)=-\cot \theta \].
Hence we can change the expression, \[\tan {{160}^{\circ }}\] and \[\tan {{110}^{\circ }}\].
\[\tan {{160}^{\circ }}\] can be written as, \[\tan \left( 180-{{20}^{\circ }} \right)\].
i.e. \[\tan {{160}^{\circ }}\] = \[\tan \left( {{180}^{\circ }}-{{20}^{\circ }} \right)=-\tan {{20}^{\circ }}\].
Similarly \[\tan {{110}^{\circ }}\] can be written as \[\tan \left( {{90}^{\circ }}+{{20}^{\circ }} \right)\].
i.e. \[\tan {{110}^{\circ }}\] = \[\tan \left( {{90}^{\circ }}+{{20}^{\circ }} \right)\] = \[-\cot {{20}^{\circ }}\]
There we can say that,
\[\begin{align}
& \Rightarrow \tan {{160}^{\circ }}=-\tan {{20}^{\circ }} \\
& \Rightarrow \tan {{110}^{\circ }}=-\cot {{20}^{\circ }} \\
\end{align}\]
Let us replace \[\tan {{160}^{\circ }}\] and \[\tan {{110}^{\circ }}\] in the LHS of the expression,
LHS = \[\dfrac{\tan {{160}^{\circ }}-\tan {{110}^{\circ }}}{1+\left( \tan {{160}^{\circ }} \right).\left( \tan {{110}^{\circ }} \right)}=\dfrac{-\tan {{20}^{\circ }}-\left( -\cot {{20}^{\circ }} \right)}{1+\left( -\tan {{20}^{\circ }} \right)\left( -\cot {{20}^{\circ }} \right)}\]
We know that, \[\cot {{20}^{\circ }}=\dfrac{1}{\tan {{20}^{\circ }}}\].
\[\therefore \] LHS = \[\dfrac{-\tan {{20}^{\circ }}+\cot {{20}^{\circ }}}{1+\tan {{20}^{\circ }}\times \dfrac{1}{\tan {{20}^{\circ }}}}=\dfrac{-\tan {{20}^{\circ }}+\dfrac{1}{\tan {{20}^{\circ }}}}{1+1}\]
Let us put \[\tan {{20}^{\circ }}=\lambda \], in the above expression.
L.H.S = \[\dfrac{-\lambda +\dfrac{1}{\lambda }}{2}=\dfrac{-{{\lambda }^{2}}+1}{2\lambda }=\dfrac{1-{{\lambda }^{2}}}{2\lambda }\]
Thus we got LHS = \[\dfrac{1-{{\lambda }^{2}}}{2\lambda }\], which is equal to the RHS.
Thus we can say that, LHS = RHS.
i.e. We prove that they are equal.
\[\therefore \dfrac{\tan {{160}^{\circ }}-\tan {{110}^{\circ }}}{1+\tan {{160}^{\circ }}.\tan {{110}^{\circ }}}=\dfrac{1-{{\lambda }^{2}}}{2\lambda }\]
Hence proved
Note: By seeing the LHS of the expression, you may assume that it is the expansion of the formula, \[\tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A\tan B}\]. But \[\tan \left( {{160}^{\circ }}-{{110}^{\circ }} \right)=\tan {{50}^{\circ }}\], it won’t give us the desirable results. Then use trigonometric identity \[\tan \left( 180-\theta \right)\] and \[\tan \left( 90+\theta \right)\] and convert the terms of \[\tan {{20}^{\circ }}\].
Complete step-by-step answer:
We are given the tangent function, \[\tan {{20}^{\circ }}=\lambda \].
We need to show that,
\[\Rightarrow \dfrac{\tan {{160}^{\circ }}-\tan {{110}^{\circ }}}{1+\tan {{160}^{\circ }}.\tan {{110}^{\circ }}}=\dfrac{1-{{\lambda }^{2}}}{2\lambda }\]
We know the basic trigonometric function such as,
\[\Rightarrow \tan \left( 180-\theta \right)=-\tan \theta \]
Similarly, \[\tan \left( 90+\theta \right)=-\cot \theta \].
Hence we can change the expression, \[\tan {{160}^{\circ }}\] and \[\tan {{110}^{\circ }}\].
\[\tan {{160}^{\circ }}\] can be written as, \[\tan \left( 180-{{20}^{\circ }} \right)\].
i.e. \[\tan {{160}^{\circ }}\] = \[\tan \left( {{180}^{\circ }}-{{20}^{\circ }} \right)=-\tan {{20}^{\circ }}\].
Similarly \[\tan {{110}^{\circ }}\] can be written as \[\tan \left( {{90}^{\circ }}+{{20}^{\circ }} \right)\].
i.e. \[\tan {{110}^{\circ }}\] = \[\tan \left( {{90}^{\circ }}+{{20}^{\circ }} \right)\] = \[-\cot {{20}^{\circ }}\]
There we can say that,
\[\begin{align}
& \Rightarrow \tan {{160}^{\circ }}=-\tan {{20}^{\circ }} \\
& \Rightarrow \tan {{110}^{\circ }}=-\cot {{20}^{\circ }} \\
\end{align}\]
Let us replace \[\tan {{160}^{\circ }}\] and \[\tan {{110}^{\circ }}\] in the LHS of the expression,
LHS = \[\dfrac{\tan {{160}^{\circ }}-\tan {{110}^{\circ }}}{1+\left( \tan {{160}^{\circ }} \right).\left( \tan {{110}^{\circ }} \right)}=\dfrac{-\tan {{20}^{\circ }}-\left( -\cot {{20}^{\circ }} \right)}{1+\left( -\tan {{20}^{\circ }} \right)\left( -\cot {{20}^{\circ }} \right)}\]
We know that, \[\cot {{20}^{\circ }}=\dfrac{1}{\tan {{20}^{\circ }}}\].
\[\therefore \] LHS = \[\dfrac{-\tan {{20}^{\circ }}+\cot {{20}^{\circ }}}{1+\tan {{20}^{\circ }}\times \dfrac{1}{\tan {{20}^{\circ }}}}=\dfrac{-\tan {{20}^{\circ }}+\dfrac{1}{\tan {{20}^{\circ }}}}{1+1}\]
Let us put \[\tan {{20}^{\circ }}=\lambda \], in the above expression.
L.H.S = \[\dfrac{-\lambda +\dfrac{1}{\lambda }}{2}=\dfrac{-{{\lambda }^{2}}+1}{2\lambda }=\dfrac{1-{{\lambda }^{2}}}{2\lambda }\]
Thus we got LHS = \[\dfrac{1-{{\lambda }^{2}}}{2\lambda }\], which is equal to the RHS.
Thus we can say that, LHS = RHS.
i.e. We prove that they are equal.
\[\therefore \dfrac{\tan {{160}^{\circ }}-\tan {{110}^{\circ }}}{1+\tan {{160}^{\circ }}.\tan {{110}^{\circ }}}=\dfrac{1-{{\lambda }^{2}}}{2\lambda }\]
Hence proved
Note: By seeing the LHS of the expression, you may assume that it is the expansion of the formula, \[\tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A\tan B}\]. But \[\tan \left( {{160}^{\circ }}-{{110}^{\circ }} \right)=\tan {{50}^{\circ }}\], it won’t give us the desirable results. Then use trigonometric identity \[\tan \left( 180-\theta \right)\] and \[\tan \left( 90+\theta \right)\] and convert the terms of \[\tan {{20}^{\circ }}\].
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

