
If $\tan (20-3\alpha )=\cot (5\alpha -20)$ then find the value of $\alpha $ and hence evaluate $\sin \alpha \,\sec \alpha \cdot \,\tan \alpha -\cos ec\alpha \cos \alpha \cdot \cot \alpha $
Answer
592.8k+ views
In general as we know tan and cot are positive in the first and third quadrant.
So we can write $\tan \left( \dfrac{\pi }{2}-\alpha \right)=\cot \alpha $ if $\alpha $is in first quadrant$\left( 0\le \alpha \le \dfrac{\pi }{2} \right)$.
If $\alpha $ is in third quadrant$\left( \pi \le \alpha \le \dfrac{3\pi }{2} \right)$ then we can write $\tan \left( \dfrac{3\pi }{2}-\alpha \right)=\cot \alpha $.
Complete step-by-step answer:
Given equation is $\tan (20-3\alpha )=\cot (5\alpha -20)$
If $\alpha $ is in first quadrant$\left( 0\le \alpha \le \dfrac{\pi }{2} \right)$ , then we can write $\tan \left( \dfrac{\pi }{2}-\alpha \right)=\cot \alpha $
$\tan (20-3\alpha )=\tan \left( \dfrac{\pi }{2}-(5\alpha -20) \right)$
On comparing both side
$\Rightarrow (20-3\alpha )=\left( \dfrac{\pi }{2}-(5\alpha -20) \right)$
$\Rightarrow 20-3\alpha =\dfrac{\pi }{2}-5\alpha +20$
$\Rightarrow 20-3\alpha +5\alpha -20=\dfrac{\pi }{2}$
$\Rightarrow 2\alpha =\dfrac{\pi }{2}$
.$\Rightarrow \alpha =\dfrac{\pi }{4}$
So if $\alpha $ is in first quadrant $\left( 0\le \alpha \le \dfrac{\pi }{2} \right)$, then it’s value is $\dfrac{\pi }{4}$.
. If $\alpha $ is in third quadrant $\left( \pi \le \alpha \le \dfrac{3\pi }{2} \right)$ then we can write $\tan \left( \dfrac{3\pi }{2}-\alpha \right)=\cot \alpha $
$\tan (20-3\alpha )=\tan \left( \dfrac{3\pi }{2}-(5\alpha -20) \right)$
.On comparing both side
$\Rightarrow (20-3\alpha )=\left( \dfrac{3\pi }{2}-(5\alpha -20) \right)$
$\Rightarrow 20-3\alpha =\dfrac{3\pi }{2}-5\alpha +20$
$\Rightarrow 20-3\alpha +5\alpha -20=\dfrac{3\pi }{2}$
$\Rightarrow \alpha =\dfrac{3\pi }{4}$
So if $\alpha $ is in third quadrant $\left( \pi \le \alpha \le \dfrac{3\pi }{2} \right)$ then it’s value is $\dfrac{3\pi }{4}$.
.Given expression is
$\sin \alpha \,\sec \alpha \cdot \,\tan \alpha -\cos ec\alpha \cos \alpha \cdot \cot \alpha $
As we know $\sec \alpha =\dfrac{1}{\cos \alpha },\cos ec\alpha =\dfrac{1}{\sin \alpha }$.
So we can write given expression as
$\sin \alpha \,\times \dfrac{1}{\cos \alpha }\cdot \,\tan \alpha -\dfrac{1}{\sin \alpha }\times \cos \alpha \cdot \cot \alpha $
$\,{{\tan }^{2}}\alpha -{{\cot }^{2}}\alpha $
When $\alpha =\dfrac{\pi }{4}$
$\,\Rightarrow {{\tan }^{2}}\left( \dfrac{\pi }{4} \right)-{{\cot }^{2}}\left( \dfrac{\pi }{4} \right)$
$\,\Rightarrow {{\left( 1 \right)}^{2}}-{{\left( 1 \right)}^{2}}$
. $\,\Rightarrow 0$
When $\alpha =\dfrac{3\pi }{4}$
$\,\Rightarrow {{\tan }^{2}}\left( \dfrac{3\pi }{4} \right)-{{\cot }^{2}}\left( \dfrac{3\pi }{4} \right)$
$\,\Rightarrow {{\left( 1 \right)}^{2}}-{{\left( 1 \right)}^{2}}$
$\,\Rightarrow 0$
Hence value is 0.
Note: In the given question we need to classify range of angle to get an exact answer. As we know $\tan (\theta )$ is a periodic function with period $\pi $ . That’s why it repeats it’s value after period of $\pi $
So we can write $\tan \left( \dfrac{3\pi }{4} \right)=\tan \left( \dfrac{\pi }{4} \right)=1$
So we can write $\tan \left( \dfrac{\pi }{2}-\alpha \right)=\cot \alpha $ if $\alpha $is in first quadrant$\left( 0\le \alpha \le \dfrac{\pi }{2} \right)$.
If $\alpha $ is in third quadrant$\left( \pi \le \alpha \le \dfrac{3\pi }{2} \right)$ then we can write $\tan \left( \dfrac{3\pi }{2}-\alpha \right)=\cot \alpha $.
Complete step-by-step answer:
Given equation is $\tan (20-3\alpha )=\cot (5\alpha -20)$
If $\alpha $ is in first quadrant$\left( 0\le \alpha \le \dfrac{\pi }{2} \right)$ , then we can write $\tan \left( \dfrac{\pi }{2}-\alpha \right)=\cot \alpha $
$\tan (20-3\alpha )=\tan \left( \dfrac{\pi }{2}-(5\alpha -20) \right)$
On comparing both side
$\Rightarrow (20-3\alpha )=\left( \dfrac{\pi }{2}-(5\alpha -20) \right)$
$\Rightarrow 20-3\alpha =\dfrac{\pi }{2}-5\alpha +20$
$\Rightarrow 20-3\alpha +5\alpha -20=\dfrac{\pi }{2}$
$\Rightarrow 2\alpha =\dfrac{\pi }{2}$
.$\Rightarrow \alpha =\dfrac{\pi }{4}$
So if $\alpha $ is in first quadrant $\left( 0\le \alpha \le \dfrac{\pi }{2} \right)$, then it’s value is $\dfrac{\pi }{4}$.
. If $\alpha $ is in third quadrant $\left( \pi \le \alpha \le \dfrac{3\pi }{2} \right)$ then we can write $\tan \left( \dfrac{3\pi }{2}-\alpha \right)=\cot \alpha $
$\tan (20-3\alpha )=\tan \left( \dfrac{3\pi }{2}-(5\alpha -20) \right)$
.On comparing both side
$\Rightarrow (20-3\alpha )=\left( \dfrac{3\pi }{2}-(5\alpha -20) \right)$
$\Rightarrow 20-3\alpha =\dfrac{3\pi }{2}-5\alpha +20$
$\Rightarrow 20-3\alpha +5\alpha -20=\dfrac{3\pi }{2}$
$\Rightarrow \alpha =\dfrac{3\pi }{4}$
So if $\alpha $ is in third quadrant $\left( \pi \le \alpha \le \dfrac{3\pi }{2} \right)$ then it’s value is $\dfrac{3\pi }{4}$.
.Given expression is
$\sin \alpha \,\sec \alpha \cdot \,\tan \alpha -\cos ec\alpha \cos \alpha \cdot \cot \alpha $
As we know $\sec \alpha =\dfrac{1}{\cos \alpha },\cos ec\alpha =\dfrac{1}{\sin \alpha }$.
So we can write given expression as
$\sin \alpha \,\times \dfrac{1}{\cos \alpha }\cdot \,\tan \alpha -\dfrac{1}{\sin \alpha }\times \cos \alpha \cdot \cot \alpha $
$\,{{\tan }^{2}}\alpha -{{\cot }^{2}}\alpha $
When $\alpha =\dfrac{\pi }{4}$
$\,\Rightarrow {{\tan }^{2}}\left( \dfrac{\pi }{4} \right)-{{\cot }^{2}}\left( \dfrac{\pi }{4} \right)$
$\,\Rightarrow {{\left( 1 \right)}^{2}}-{{\left( 1 \right)}^{2}}$
. $\,\Rightarrow 0$
When $\alpha =\dfrac{3\pi }{4}$
$\,\Rightarrow {{\tan }^{2}}\left( \dfrac{3\pi }{4} \right)-{{\cot }^{2}}\left( \dfrac{3\pi }{4} \right)$
$\,\Rightarrow {{\left( 1 \right)}^{2}}-{{\left( 1 \right)}^{2}}$
$\,\Rightarrow 0$
Hence value is 0.
Note: In the given question we need to classify range of angle to get an exact answer. As we know $\tan (\theta )$ is a periodic function with period $\pi $ . That’s why it repeats it’s value after period of $\pi $
So we can write $\tan \left( \dfrac{3\pi }{4} \right)=\tan \left( \dfrac{\pi }{4} \right)=1$
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

