
If \[{\tan ^{ - 1}}\left\{ {\dfrac{{\sqrt {1 + {x^2}} - \sqrt {1 - {x^2}} }}{{\sqrt {1 + {x^2}} + \sqrt {1 - {x^2}} }}} \right\} = \alpha \], then ${x^2}$$ = $
$
A.\sin 2\alpha \\
B.\sin \alpha \\
C.\cos 2\alpha \\
D.\cos \alpha \\
$
Answer
614.4k+ views
Hint:In this question we will use the concept of componendo and dividendo i.e. \[\dfrac{{a + b}}{{a - b}} = \dfrac{{c + d}}{{c - d}}\] and some basis conversions like $\tan \alpha = \dfrac{{\sin \alpha }}{{\cos \alpha }}$ and $2\sin \alpha \cos \alpha = \sin 2\alpha $. Use this to find the value of ${x^2}$.
Complete step-by-step answer:
According to the question it is given \[{\tan ^{ - 1}}\left\{ {\dfrac{{\sqrt {1 + {x^2}} - \sqrt {1 - {x^2}} }}{{\sqrt {1 + {x^2}} + \sqrt {1 - {x^2}} }}} \right\} = \alpha \],
Applying tan on both side, we can write it as
\[\dfrac{{\sqrt {1 + {x^2}} - \sqrt {1 - {x^2}} }}{{\sqrt {1 + {x^2}} + \sqrt {1 - {x^2}} }} = \dfrac{{\tan \alpha }}{1}\] $\left[ {\dfrac{{\tan \alpha }}{1}} \right.$ because componendo and dividendo is used i.e.$\left. {\dfrac{a}{b} = \dfrac{c}{d}} \right]$
We know that in componendo and dividendo \[\dfrac{{a + b}}{{a - b}} = \dfrac{{c + d}}{{c - d}}\]
Now,
$
\Rightarrow \dfrac{{\sqrt {1 + {x^2}} - \sqrt {1 - {x^2}} + \sqrt {1 + {x^2}} + \sqrt {1 - {x^2}} }}{{\sqrt {1 + {x^2}} - \sqrt {1 - {x^2}} - \sqrt {1 + {x^2}} - \sqrt {1 - {x^2}} }} = \dfrac{{\tan \alpha + 1}}{{\tan \alpha - 1}} \\
\Rightarrow \dfrac{{2\sqrt {1 + {x^2}} }}{{ - 2\sqrt {1 - {x^2}} }} = \dfrac{{\tan \alpha + 1}}{{\tan \alpha - 1}} \\
$
Change the sign so we can write,
$ \Rightarrow \dfrac{{\sqrt {1 + {x^2}} }}{{\sqrt {1 - {x^2}} }} = \dfrac{{1 + \tan \alpha }}{{1 - \tan \alpha }}$
Now we can write $\tan \alpha = \dfrac{{\sin \alpha }}{{\cos \alpha }}$
Hence,
$
\Rightarrow \dfrac{{\sqrt {1 + {x^2}} }}{{\sqrt {1 - {x^2}} }} = \dfrac{{1 + \dfrac{{\sin \alpha }}{{\cos \alpha }}}}{{1 - \dfrac{{\sin \alpha }}{{\cos \alpha }}}} \\
\Rightarrow \dfrac{{\sqrt {1 + {x^2}} }}{{\sqrt {1 - {x^2}} }} = \dfrac{{\dfrac{{\cos \alpha + \sin \alpha }}{{\cos \alpha }}}}{{\dfrac{{\cos \alpha - \sin \alpha }}{{\cos \alpha }}}} \\
$
Squaring on both the sides,
\[
\Rightarrow \dfrac{{1 + {x^2}}}{{1 - {x^2}}} = \dfrac{{{{\left( {\cos \alpha + \sin \alpha } \right)}^2}}}{{{{\left( {\cos \alpha - \sin \alpha } \right)}^2}}} \\
\Rightarrow \dfrac{{1 + {x^2}}}{{1 - {x^2}}} = \dfrac{{{{\cos }^2}\alpha + {{\sin }^2}\alpha + 2\sin \alpha \cos \alpha }}{{{{\cos }^2}\alpha + {{\sin }^2}\alpha - 2\sin \alpha \cos \alpha }} \\
\Rightarrow \dfrac{{1 + {x^2}}}{{1 - {x^2}}} = \dfrac{{1 + 2\sin \alpha \cos \alpha }}{{1 - 2\sin \alpha \cos \alpha }} \\
\]
We know that $2\sin \alpha \cos \alpha = \sin 2\alpha $
Hence, by substituting the value we get
$ \Rightarrow \dfrac{{1 + {x^2}}}{{1 - {x^2}}} = \dfrac{{1 + \sin 2\alpha }}{{1 - \sin 2\alpha }}$
Apply componendo and dividendo again, we get
$
\Rightarrow \dfrac{{1 + {x^2} + 1 - {x^2}}}{{1 + {x^2} - 1 + {x^2}}} = \dfrac{{1 + \sin 2\alpha + 1 - \sin 2\alpha }}{{1 + \sin 2\alpha - 1 + \sin 2\alpha }} \\
\Rightarrow \dfrac{2}{{2{x^2}}} = \dfrac{2}{{2\sin 2\alpha }} \\
\Rightarrow {x^2} = \sin 2\alpha \\
$
So the value of ${x^2}$ is $\sin 2\alpha$
Note: It is always advisable to remember some basic concepts and basic conversions while involving trigonometric questions as it saves a lot of time.For above question we used concept of componendo and dividendo i.e. \[\dfrac{{a + b}}{{a - b}} = \dfrac{{c + d}}{{c - d}}\] for solving the problem.Students make mistakes while applying componendo and dividendo have to take care of values which is a and b from the given equation and to find a+b and a-b values and also should remember trigonometric ratios and identities for solving these types of problems.
Complete step-by-step answer:
According to the question it is given \[{\tan ^{ - 1}}\left\{ {\dfrac{{\sqrt {1 + {x^2}} - \sqrt {1 - {x^2}} }}{{\sqrt {1 + {x^2}} + \sqrt {1 - {x^2}} }}} \right\} = \alpha \],
Applying tan on both side, we can write it as
\[\dfrac{{\sqrt {1 + {x^2}} - \sqrt {1 - {x^2}} }}{{\sqrt {1 + {x^2}} + \sqrt {1 - {x^2}} }} = \dfrac{{\tan \alpha }}{1}\] $\left[ {\dfrac{{\tan \alpha }}{1}} \right.$ because componendo and dividendo is used i.e.$\left. {\dfrac{a}{b} = \dfrac{c}{d}} \right]$
We know that in componendo and dividendo \[\dfrac{{a + b}}{{a - b}} = \dfrac{{c + d}}{{c - d}}\]
Now,
$
\Rightarrow \dfrac{{\sqrt {1 + {x^2}} - \sqrt {1 - {x^2}} + \sqrt {1 + {x^2}} + \sqrt {1 - {x^2}} }}{{\sqrt {1 + {x^2}} - \sqrt {1 - {x^2}} - \sqrt {1 + {x^2}} - \sqrt {1 - {x^2}} }} = \dfrac{{\tan \alpha + 1}}{{\tan \alpha - 1}} \\
\Rightarrow \dfrac{{2\sqrt {1 + {x^2}} }}{{ - 2\sqrt {1 - {x^2}} }} = \dfrac{{\tan \alpha + 1}}{{\tan \alpha - 1}} \\
$
Change the sign so we can write,
$ \Rightarrow \dfrac{{\sqrt {1 + {x^2}} }}{{\sqrt {1 - {x^2}} }} = \dfrac{{1 + \tan \alpha }}{{1 - \tan \alpha }}$
Now we can write $\tan \alpha = \dfrac{{\sin \alpha }}{{\cos \alpha }}$
Hence,
$
\Rightarrow \dfrac{{\sqrt {1 + {x^2}} }}{{\sqrt {1 - {x^2}} }} = \dfrac{{1 + \dfrac{{\sin \alpha }}{{\cos \alpha }}}}{{1 - \dfrac{{\sin \alpha }}{{\cos \alpha }}}} \\
\Rightarrow \dfrac{{\sqrt {1 + {x^2}} }}{{\sqrt {1 - {x^2}} }} = \dfrac{{\dfrac{{\cos \alpha + \sin \alpha }}{{\cos \alpha }}}}{{\dfrac{{\cos \alpha - \sin \alpha }}{{\cos \alpha }}}} \\
$
Squaring on both the sides,
\[
\Rightarrow \dfrac{{1 + {x^2}}}{{1 - {x^2}}} = \dfrac{{{{\left( {\cos \alpha + \sin \alpha } \right)}^2}}}{{{{\left( {\cos \alpha - \sin \alpha } \right)}^2}}} \\
\Rightarrow \dfrac{{1 + {x^2}}}{{1 - {x^2}}} = \dfrac{{{{\cos }^2}\alpha + {{\sin }^2}\alpha + 2\sin \alpha \cos \alpha }}{{{{\cos }^2}\alpha + {{\sin }^2}\alpha - 2\sin \alpha \cos \alpha }} \\
\Rightarrow \dfrac{{1 + {x^2}}}{{1 - {x^2}}} = \dfrac{{1 + 2\sin \alpha \cos \alpha }}{{1 - 2\sin \alpha \cos \alpha }} \\
\]
We know that $2\sin \alpha \cos \alpha = \sin 2\alpha $
Hence, by substituting the value we get
$ \Rightarrow \dfrac{{1 + {x^2}}}{{1 - {x^2}}} = \dfrac{{1 + \sin 2\alpha }}{{1 - \sin 2\alpha }}$
Apply componendo and dividendo again, we get
$
\Rightarrow \dfrac{{1 + {x^2} + 1 - {x^2}}}{{1 + {x^2} - 1 + {x^2}}} = \dfrac{{1 + \sin 2\alpha + 1 - \sin 2\alpha }}{{1 + \sin 2\alpha - 1 + \sin 2\alpha }} \\
\Rightarrow \dfrac{2}{{2{x^2}}} = \dfrac{2}{{2\sin 2\alpha }} \\
\Rightarrow {x^2} = \sin 2\alpha \\
$
So the value of ${x^2}$ is $\sin 2\alpha$
Note: It is always advisable to remember some basic concepts and basic conversions while involving trigonometric questions as it saves a lot of time.For above question we used concept of componendo and dividendo i.e. \[\dfrac{{a + b}}{{a - b}} = \dfrac{{c + d}}{{c - d}}\] for solving the problem.Students make mistakes while applying componendo and dividendo have to take care of values which is a and b from the given equation and to find a+b and a-b values and also should remember trigonometric ratios and identities for solving these types of problems.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

