
If \[\sum\limits_{r = 1}^n {r\left( {r + 1} \right)\left( {2r + 3} \right)} = a{n^4} + b{n^3} + c{n^2} + dn + e\] then,
A. $a + c = b + d$
B. \[e = 0\]
C. $a,b - \dfrac{2}{3},c - 1$ are in A.P.
D. $\dfrac{c}{a}$ is an integer
Answer
572.4k+ views
Hint: We’ll approach the solution by finding the values of a, b, c, d, and e by evaluating the left-hand side of the equation using some the well-known formulas i.e.
\[
\sum\limits_{r = 1}^n r = \dfrac{{n\left( {n + 1} \right)}}{2} \\
\sum\limits_{r = 1}^n {{r^2}} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} \\
\sum\limits_{r = 1}^n {{r^3}} = {\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2} \\
\]
Then we’ll compare our result with the right-hand side to get the required answer.
Complete step by step answer:
Given data: \[\sum\limits_{r = 1}^n {r\left( {r + 1} \right)\left( {2r + 3} \right)} = a{n^4} + b{n^3} + c{n^2} + dn + e\]
On solving the left-hand side of the equation \[\sum\limits_{r = 1}^n {r\left( {r + 1} \right)\left( {2r + 3} \right)} = a{n^4} + b{n^3} + c{n^2} + dn + e\]
\[ = \sum\limits_{r = 1}^n {r\left( {r + 1} \right)\left( {2r + 3} \right)} \]
\[ = \sum\limits_{r = 1}^n {\left( {{r^2} + r} \right)\left( {2r + 3} \right)} \]
On further expanding we get,
\[ = \sum\limits_{r = 1}^n {\left( {2{r^3} + 3{r^2} + 2{r^2} + 3r} \right)} \]
\[ = \sum\limits_{r = 1}^n {\left( {2{r^3} + 5{r^2} + 3r} \right)} \]
It is well known that,
\[\sum\limits_{r = 1}^n {(A + B + C} ) = \sum\limits_{r = 1}^n A + \sum\limits_{r = 1}^n B + \sum\limits_{r = 1}^n C \]
\[ \Rightarrow \sum\limits_{r = 1}^n {\left( {2{r^3} + 5{r^2} + 3r} \right)} = \sum\limits_{r = 1}^n {2{r^3}} + \sum\limits_{r = 1}^n {5{r^2}} + \sum\limits_{r = 1}^n {3r} \]
\[ \Rightarrow 2\sum\limits_{r = 1}^n {{r^3}} + 5\sum\limits_{r = 1}^n {{r^2}} + 3\sum\limits_{r = 1}^n r \]
Now, as we all know
\[
\sum\limits_{r = 1}^n r = \dfrac{{n\left( {n + 1} \right)}}{2} \\
\sum\limits_{r = 1}^n {{r^2}} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} \\
\sum\limits_{r = 1}^n {{r^3}} = {\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2} \\
\]
So, We’ll have
\[2\sum\limits_{r = 1}^n {{r^3}} + 5\sum\limits_{r = 1}^n {{r^2}} + 3\sum\limits_{r = 1}^n r = 2{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2} + 5\left( {\dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}} \right) + 3\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)\]
\[ = 2\left( {\dfrac{{{{\left( {{n^2} + n} \right)}^2}}}{4}} \right) + 5\left( {\dfrac{{\left( {{n^2} + n} \right)\left( {2n + 1} \right)}}{6}} \right) + 3\left( {\dfrac{{{n^2} + n}}{2}} \right)\]
After expanding the second term by opening the brackets
\[ = \dfrac{1}{2}{\left( {{n^2} + n} \right)^2} + \dfrac{5}{6}\left( {2{n^3} + {n^2} + 2{n^2} + n} \right) + \dfrac{3}{2}\left( {{n^2} + n} \right)\]
Using \[{(a + b)^2} = {a^2} + {b^2} + 2ab\]in the first term,
\[ = \dfrac{1}{2}\left( {{n^4} + {n^2} + 2{n^3}} \right) + \dfrac{5}{6}\left( {2{n^3} + 3{n^2} + n} \right) + \dfrac{3}{2}\left( {{n^2} + n} \right)\]
Now, separating the terms with respect to exponents we get,
\[ = \dfrac{1}{2}{n^4} + 2{n^3}\left( {\dfrac{1}{2} + \dfrac{5}{6}} \right) + {n^2}\left( {\dfrac{1}{2} + 3\left( {\dfrac{5}{6}} \right) + \dfrac{3}{2}} \right) + n\left( {\dfrac{5}{6} + \dfrac{3}{2}} \right)\]
On further simplification we get,
\[ = \dfrac{1}{2}{n^4} + 2{n^3}\left( {\dfrac{{3 + 5}}{6}} \right) + {n^2}\left( {\dfrac{1}{2} + \dfrac{5}{2} + \dfrac{3}{2}} \right) + n\left( {\dfrac{{5 + 9}}{6}} \right)\]
\[ = \dfrac{1}{2}{n^4} + \dfrac{8}{3}{n^3} + \dfrac{9}{2}{n^2} + \dfrac{{14}}{6}n\]
\[ = \dfrac{1}{2}{n^4} + \dfrac{8}{3}{n^3} + \dfrac{9}{2}{n^2} + \dfrac{7}{3}n\]
Therefore we now have
\[\sum\limits_{r = 1}^n {r\left( {r + 1} \right)\left( {2r + 3} \right)} = \dfrac{1}{2}{n^4} + \dfrac{8}{3}{n^3} + \dfrac{9}{2}{n^2} + \dfrac{7}{3}n\]
On computing this with the given equation, \[\sum\limits_{r = 1}^n {r\left( {r + 1} \right)\left( {2r + 3} \right)} = a{n^4} + b{n^3} + c{n^2} + dn + e\] , we get,
$
a = \dfrac{1}{2} \\
b = \dfrac{8}{3} \\
c = \dfrac{9}{2} \\
d = \dfrac{7}{3} \\
e = 0 \\
$
Option(B) is correct
Now,
\[
a + c = \dfrac{1}{2} + \dfrac{9}{2} \\
= \dfrac{{10}}{2} \\
= 5 \\
b + d = \dfrac{8}{3} + \dfrac{7}{3} \\
= \dfrac{{15}}{3} \\
= 5 \\
\]
Since, ${\text{a + c = b + d = 5}}$
Option(A) is correct
\[
a,b - \dfrac{2}{3},c - 1 = \dfrac{1}{2},\dfrac{8}{3} - \dfrac{2}{3},\dfrac{9}{2} - 1 \\
= \dfrac{1}{2},2,\dfrac{7}{2} \\
\]
Now checking for common difference,
\[
b - \dfrac{2}{3} - a = 2 - \dfrac{1}{2} \\
= \dfrac{{4 - 1}}{2} \\
= \dfrac{3}{2}{\text{ }}and \\
c - 1 - (b - \dfrac{2}{3}) = \dfrac{7}{2} - 2 \\
= \dfrac{{7 - 4}}{2} \\
= \dfrac{3}{2} \\
\]
Since the common difference is the same for both consecutive terms we can conclude that
$a,b - \dfrac{2}{3},c - 1$ are in A.P.
Therefore, option(C) is correct
Now, checking for $\dfrac{c}{a},$
$
\dfrac{c}{a} = \dfrac{{\left( {\dfrac{9}{2}} \right)}}{{\left( {\dfrac{1}{2}} \right)}} \\
= 9 \\
$
Which is an integer
Therefore, option(D) is correct
Hence, All the options are correct.
Note: We can also verify our answer by putting the value of n in \[\sum\limits_{r = 1}^n {r\left( {r + 1} \right)\left( {2r + 3} \right)} = a{n^4} + b{n^3} + c{n^2} + dn + e\]
Putting \[n = 1\] , we get
\[\sum\limits_{r = 1}^1 {r\left( {r + 1} \right)\left( {2r + 3} \right)} = a{(1)^4} + b{(1)^3} + c{(1)^2} + d(1) + e\]
\[ \Rightarrow (1)\left( {1 + 1} \right)\left( {2(1) + 3} \right) = a + b + c + d + e\]
\[ \Rightarrow a + b + c + d + e = 2(5)\]
\[ \Rightarrow a + b + c + d + e = 10\]
Substituting the values of a, b, c, d, and e
\[a + b + c + d + e = \dfrac{1}{2} + \dfrac{8}{3} + \dfrac{9}{2} + \dfrac{7}{3} + 0\]
\[ = \dfrac{{1 + 9}}{2} + \dfrac{{8 + 7}}{3}\]
\[ = \dfrac{{10}}{2} + \dfrac{{15}}{3}\]
\[ = 5 + 5\]
\[ = 10\]
Therefore, we can conclude the values of A, B, C, D and are correct.
\[
\sum\limits_{r = 1}^n r = \dfrac{{n\left( {n + 1} \right)}}{2} \\
\sum\limits_{r = 1}^n {{r^2}} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} \\
\sum\limits_{r = 1}^n {{r^3}} = {\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2} \\
\]
Then we’ll compare our result with the right-hand side to get the required answer.
Complete step by step answer:
Given data: \[\sum\limits_{r = 1}^n {r\left( {r + 1} \right)\left( {2r + 3} \right)} = a{n^4} + b{n^3} + c{n^2} + dn + e\]
On solving the left-hand side of the equation \[\sum\limits_{r = 1}^n {r\left( {r + 1} \right)\left( {2r + 3} \right)} = a{n^4} + b{n^3} + c{n^2} + dn + e\]
\[ = \sum\limits_{r = 1}^n {r\left( {r + 1} \right)\left( {2r + 3} \right)} \]
\[ = \sum\limits_{r = 1}^n {\left( {{r^2} + r} \right)\left( {2r + 3} \right)} \]
On further expanding we get,
\[ = \sum\limits_{r = 1}^n {\left( {2{r^3} + 3{r^2} + 2{r^2} + 3r} \right)} \]
\[ = \sum\limits_{r = 1}^n {\left( {2{r^3} + 5{r^2} + 3r} \right)} \]
It is well known that,
\[\sum\limits_{r = 1}^n {(A + B + C} ) = \sum\limits_{r = 1}^n A + \sum\limits_{r = 1}^n B + \sum\limits_{r = 1}^n C \]
\[ \Rightarrow \sum\limits_{r = 1}^n {\left( {2{r^3} + 5{r^2} + 3r} \right)} = \sum\limits_{r = 1}^n {2{r^3}} + \sum\limits_{r = 1}^n {5{r^2}} + \sum\limits_{r = 1}^n {3r} \]
\[ \Rightarrow 2\sum\limits_{r = 1}^n {{r^3}} + 5\sum\limits_{r = 1}^n {{r^2}} + 3\sum\limits_{r = 1}^n r \]
Now, as we all know
\[
\sum\limits_{r = 1}^n r = \dfrac{{n\left( {n + 1} \right)}}{2} \\
\sum\limits_{r = 1}^n {{r^2}} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} \\
\sum\limits_{r = 1}^n {{r^3}} = {\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2} \\
\]
So, We’ll have
\[2\sum\limits_{r = 1}^n {{r^3}} + 5\sum\limits_{r = 1}^n {{r^2}} + 3\sum\limits_{r = 1}^n r = 2{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2} + 5\left( {\dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}} \right) + 3\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)\]
\[ = 2\left( {\dfrac{{{{\left( {{n^2} + n} \right)}^2}}}{4}} \right) + 5\left( {\dfrac{{\left( {{n^2} + n} \right)\left( {2n + 1} \right)}}{6}} \right) + 3\left( {\dfrac{{{n^2} + n}}{2}} \right)\]
After expanding the second term by opening the brackets
\[ = \dfrac{1}{2}{\left( {{n^2} + n} \right)^2} + \dfrac{5}{6}\left( {2{n^3} + {n^2} + 2{n^2} + n} \right) + \dfrac{3}{2}\left( {{n^2} + n} \right)\]
Using \[{(a + b)^2} = {a^2} + {b^2} + 2ab\]in the first term,
\[ = \dfrac{1}{2}\left( {{n^4} + {n^2} + 2{n^3}} \right) + \dfrac{5}{6}\left( {2{n^3} + 3{n^2} + n} \right) + \dfrac{3}{2}\left( {{n^2} + n} \right)\]
Now, separating the terms with respect to exponents we get,
\[ = \dfrac{1}{2}{n^4} + 2{n^3}\left( {\dfrac{1}{2} + \dfrac{5}{6}} \right) + {n^2}\left( {\dfrac{1}{2} + 3\left( {\dfrac{5}{6}} \right) + \dfrac{3}{2}} \right) + n\left( {\dfrac{5}{6} + \dfrac{3}{2}} \right)\]
On further simplification we get,
\[ = \dfrac{1}{2}{n^4} + 2{n^3}\left( {\dfrac{{3 + 5}}{6}} \right) + {n^2}\left( {\dfrac{1}{2} + \dfrac{5}{2} + \dfrac{3}{2}} \right) + n\left( {\dfrac{{5 + 9}}{6}} \right)\]
\[ = \dfrac{1}{2}{n^4} + \dfrac{8}{3}{n^3} + \dfrac{9}{2}{n^2} + \dfrac{{14}}{6}n\]
\[ = \dfrac{1}{2}{n^4} + \dfrac{8}{3}{n^3} + \dfrac{9}{2}{n^2} + \dfrac{7}{3}n\]
Therefore we now have
\[\sum\limits_{r = 1}^n {r\left( {r + 1} \right)\left( {2r + 3} \right)} = \dfrac{1}{2}{n^4} + \dfrac{8}{3}{n^3} + \dfrac{9}{2}{n^2} + \dfrac{7}{3}n\]
On computing this with the given equation, \[\sum\limits_{r = 1}^n {r\left( {r + 1} \right)\left( {2r + 3} \right)} = a{n^4} + b{n^3} + c{n^2} + dn + e\] , we get,
$
a = \dfrac{1}{2} \\
b = \dfrac{8}{3} \\
c = \dfrac{9}{2} \\
d = \dfrac{7}{3} \\
e = 0 \\
$
Option(B) is correct
Now,
\[
a + c = \dfrac{1}{2} + \dfrac{9}{2} \\
= \dfrac{{10}}{2} \\
= 5 \\
b + d = \dfrac{8}{3} + \dfrac{7}{3} \\
= \dfrac{{15}}{3} \\
= 5 \\
\]
Since, ${\text{a + c = b + d = 5}}$
Option(A) is correct
\[
a,b - \dfrac{2}{3},c - 1 = \dfrac{1}{2},\dfrac{8}{3} - \dfrac{2}{3},\dfrac{9}{2} - 1 \\
= \dfrac{1}{2},2,\dfrac{7}{2} \\
\]
Now checking for common difference,
\[
b - \dfrac{2}{3} - a = 2 - \dfrac{1}{2} \\
= \dfrac{{4 - 1}}{2} \\
= \dfrac{3}{2}{\text{ }}and \\
c - 1 - (b - \dfrac{2}{3}) = \dfrac{7}{2} - 2 \\
= \dfrac{{7 - 4}}{2} \\
= \dfrac{3}{2} \\
\]
Since the common difference is the same for both consecutive terms we can conclude that
$a,b - \dfrac{2}{3},c - 1$ are in A.P.
Therefore, option(C) is correct
Now, checking for $\dfrac{c}{a},$
$
\dfrac{c}{a} = \dfrac{{\left( {\dfrac{9}{2}} \right)}}{{\left( {\dfrac{1}{2}} \right)}} \\
= 9 \\
$
Which is an integer
Therefore, option(D) is correct
Hence, All the options are correct.
Note: We can also verify our answer by putting the value of n in \[\sum\limits_{r = 1}^n {r\left( {r + 1} \right)\left( {2r + 3} \right)} = a{n^4} + b{n^3} + c{n^2} + dn + e\]
Putting \[n = 1\] , we get
\[\sum\limits_{r = 1}^1 {r\left( {r + 1} \right)\left( {2r + 3} \right)} = a{(1)^4} + b{(1)^3} + c{(1)^2} + d(1) + e\]
\[ \Rightarrow (1)\left( {1 + 1} \right)\left( {2(1) + 3} \right) = a + b + c + d + e\]
\[ \Rightarrow a + b + c + d + e = 2(5)\]
\[ \Rightarrow a + b + c + d + e = 10\]
Substituting the values of a, b, c, d, and e
\[a + b + c + d + e = \dfrac{1}{2} + \dfrac{8}{3} + \dfrac{9}{2} + \dfrac{7}{3} + 0\]
\[ = \dfrac{{1 + 9}}{2} + \dfrac{{8 + 7}}{3}\]
\[ = \dfrac{{10}}{2} + \dfrac{{15}}{3}\]
\[ = 5 + 5\]
\[ = 10\]
Therefore, we can conclude the values of A, B, C, D and are correct.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

