
If \[\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=0\] then find the value of \[{{\left( a+b+c \right)}^{3}}.\]
A. \[27abc\]
B. \[3abc\]
C. \[9abc\]
D. \[abc\]
Answer
618k+ views
Hint:Consider the values of the given expression as x, y, z for the terms given. Use the algebraic expansion of \[\left( {{x}^{3}}+{{y}^{3}}+{{z}^{3}} \right)\] to solve and find the expression for \[{{\left( a+b+c \right)}^{3}}.\]
Complete step-by-step answer:
Given is that \[\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=0\]
Let us take the value of \[x=\sqrt[3]{a},y=\sqrt[3]{b},z=\sqrt[3]{c}\]
Here, we need to find the value of \[{{\left( a+b+c \right)}^{3}}.\]
We know the expression, \[\left( {{x}^{3}}+{{y}^{3}}+{{z}^{3}} \right)\].
\[{{x}^{3}}+{{y}^{3}}+{{z}^{3}}=\left( x+y+z \right)\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-xz \right)+3xyz\].
Here \[x+y+z=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\]
We have been given that \[x+y+z=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=0.\]
So, \[x+y+z=0.\]
\[\begin{align}
& {{x}^{3}}+{{y}^{3}}+{{z}^{3}}=\left( x+y+z \right)\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-xz \right)+3xyz \\
& {{x}^{3}}+{{y}^{3}}+{{z}^{3}}=0\times \left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-xz \right)+3xyz \\
& \Rightarrow {{x}^{3}}+{{y}^{3}}+{{z}^{3}}=3xyz.........(1) \\
\end{align}\]
We got an expression after the simplification. Let us substitute the values of x, y, z in equation (1).
\[\begin{align}
& {{\left( \sqrt[3]{a} \right)}^{3}}+{{\left( \sqrt[3]{b} \right)}^{3}}+{{\left( \sqrt[3]{c} \right)}^{3}}=3\left( \sqrt[3]{a} \right)\left( \sqrt[3]{b} \right)\left( \sqrt[3]{c} \right) \\
& a+b+c=3\left( \sqrt[3]{a} \right)\left( \sqrt[3]{b} \right)\left( \sqrt[3]{c} \right) \\
& a+b+c=3\sqrt[3]{abc}. \\
\end{align}\]
Let’s take cubes on both the sides.
\[\begin{align}
& {{\left( a+b+c \right)}^{3}}={{\left( 3\sqrt[3]{abc} \right)}^{3}}={{3}^{3}}\left( abc \right) \\
& {{\left( a+b+c \right)}^{3}}=27abc. \\
\end{align}\]
Thus we got the value of \[{{\left( a+b+c \right)}^{3}}\] as \[27abc.\]
Hence option A is the correct answer.
Note:The key to solving this question is the expansion of \[\left( {{x}^{3}}+{{y}^{3}}+{{z}^{3}} \right)\]. By using this identity, we can easily get a relation and find out the value of \[\left( a+b+c \right)\]. And also remember \[{{\left( \sqrt[3]{a} \right)}^{3}}=a.\]
Complete step-by-step answer:
Given is that \[\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=0\]
Let us take the value of \[x=\sqrt[3]{a},y=\sqrt[3]{b},z=\sqrt[3]{c}\]
Here, we need to find the value of \[{{\left( a+b+c \right)}^{3}}.\]
We know the expression, \[\left( {{x}^{3}}+{{y}^{3}}+{{z}^{3}} \right)\].
\[{{x}^{3}}+{{y}^{3}}+{{z}^{3}}=\left( x+y+z \right)\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-xz \right)+3xyz\].
Here \[x+y+z=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\]
We have been given that \[x+y+z=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=0.\]
So, \[x+y+z=0.\]
\[\begin{align}
& {{x}^{3}}+{{y}^{3}}+{{z}^{3}}=\left( x+y+z \right)\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-xz \right)+3xyz \\
& {{x}^{3}}+{{y}^{3}}+{{z}^{3}}=0\times \left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-xz \right)+3xyz \\
& \Rightarrow {{x}^{3}}+{{y}^{3}}+{{z}^{3}}=3xyz.........(1) \\
\end{align}\]
We got an expression after the simplification. Let us substitute the values of x, y, z in equation (1).
\[\begin{align}
& {{\left( \sqrt[3]{a} \right)}^{3}}+{{\left( \sqrt[3]{b} \right)}^{3}}+{{\left( \sqrt[3]{c} \right)}^{3}}=3\left( \sqrt[3]{a} \right)\left( \sqrt[3]{b} \right)\left( \sqrt[3]{c} \right) \\
& a+b+c=3\left( \sqrt[3]{a} \right)\left( \sqrt[3]{b} \right)\left( \sqrt[3]{c} \right) \\
& a+b+c=3\sqrt[3]{abc}. \\
\end{align}\]
Let’s take cubes on both the sides.
\[\begin{align}
& {{\left( a+b+c \right)}^{3}}={{\left( 3\sqrt[3]{abc} \right)}^{3}}={{3}^{3}}\left( abc \right) \\
& {{\left( a+b+c \right)}^{3}}=27abc. \\
\end{align}\]
Thus we got the value of \[{{\left( a+b+c \right)}^{3}}\] as \[27abc.\]
Hence option A is the correct answer.
Note:The key to solving this question is the expansion of \[\left( {{x}^{3}}+{{y}^{3}}+{{z}^{3}} \right)\]. By using this identity, we can easily get a relation and find out the value of \[\left( a+b+c \right)\]. And also remember \[{{\left( \sqrt[3]{a} \right)}^{3}}=a.\]
Recently Updated Pages
Master Class 7 English: Engaging Questions & Answers for Success

Master Class 7 Maths: Engaging Questions & Answers for Success

Master Class 7 Science: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Trending doubts
What are the factors of 100 class 7 maths CBSE

The value of 6 more than 7 is A 1 B 1 C 13 D 13 class 7 maths CBSE

Convert 200 Million dollars in rupees class 7 maths CBSE

AIM To prepare stained temporary mount of onion peel class 7 biology CBSE

Write a letter to the editor of the national daily class 7 english CBSE

List of coprime numbers from 1 to 100 class 7 maths CBSE


