Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

If $\sqrt 3 \sin \theta = \cos \theta $ , find the value of $\dfrac{{\sin \theta \tan \theta \left( {1 + \cos \theta } \right)}}{{\sin \theta + \cos \theta }}$ .

Answer
VerifiedVerified
485.1k+ views
Hint: Firstly, find the values of \[\sin \theta \] and $\cos \theta $ , using the relation $\sqrt 3 \sin \theta = \cos \theta $ .
Then, substitute the values of $\sin \theta ,\cos \theta ,\tan \theta $ in $\dfrac{{\sin \theta \tan \theta \left( {1 + \cos \theta } \right)}}{{\sin \theta + \cos \theta }}$ , to get the required answer.

Complete step-by-step answer:
It is given that, $\sqrt 3 \sin \theta = \cos \theta $ .
 \[
  \therefore \dfrac{{\sin \theta }}{{\cos \theta }} = \dfrac{1}{{\sqrt 3 }} \\
  \Rightarrow \tan \theta = \dfrac{1}{{\sqrt 3 }} \\
  \Rightarrow \theta = {\tan ^{ - 1}}\dfrac{1}{{\sqrt 3 }} \\
  \Rightarrow \theta = 30^\circ \\
 \]
Now, we need to find the value of $\dfrac{{\sin \theta \tan \theta \left( {1 + \cos \theta } \right)}}{{\sin \theta + \cos \theta }}$ . So, firstly we need to find the values of \[\sin \theta \] and $\cos \theta $ by putting \[\theta = 30^\circ \] .
 $\Rightarrow \sin \theta = \sin 30^\circ = \dfrac{1}{2}$ and $\cos \theta = \cos 30^\circ = \dfrac{{\sqrt 3 }}{2}$ .
Thus, we get $\tan \theta = \dfrac{1}{{\sqrt 3 }},\sin \theta = \dfrac{1}{2}$ and $\cos \theta = \dfrac{{\sqrt 3 }}{2}$ .
Now, we will substitute the values $\tan \theta = \dfrac{1}{{\sqrt 3 }},\sin \theta = \dfrac{1}{2}$ and $\cos \theta = \dfrac{{\sqrt 3 }}{2}$ in $\dfrac{{\sin \theta \tan \theta \left( {1 + \cos \theta } \right)}}{{\sin \theta + \cos \theta }}$ , to get the required answer.
 $
  \Rightarrow \dfrac{{\sin \theta \tan \theta \left( {1 + \cos \theta } \right)}}{{\sin \theta + \cos \theta }} = \dfrac{{\left( {\dfrac{1}{2}} \right)\left( {\dfrac{1}{{\sqrt 3 }}} \right)\left( {1 + \dfrac{{\sqrt 3 }}{2}} \right)}}{{\dfrac{1}{2} + \dfrac{{\sqrt 3 }}{2}}} \\
   = \dfrac{{\dfrac{1}{{2\sqrt 3 }}\left( {\dfrac{{2 + \sqrt 3 }}{2}} \right)}}{{\dfrac{{1 + \sqrt 3 }}{2}}} \\
   = \dfrac{1}{{2\sqrt 3 }} \times \dfrac{{2 + \sqrt 3 }}{{1 + \sqrt 3 }} \\
   = \dfrac{{2 + \sqrt 3 }}{{2\sqrt 3 \left( {1 + \sqrt 3 } \right)}} \\
 $
Thus, we get the value $\dfrac{{\sin \theta \tan \theta \left( {1 + \cos \theta } \right)}}{{\sin \theta + \cos \theta }} = \dfrac{{2 + \sqrt 3 }}{{2\sqrt 3 \left( {1 + \sqrt 3 } \right)}}$ .

Note: Important table to be remembered:

$0^\circ $ $30^\circ $$45^\circ $$60^\circ $$90^\circ $
$\sin \theta $0$\dfrac{1}{2}$ $\dfrac{1}{{\sqrt 2 }}$ $\dfrac{{\sqrt 3 }}{2}$1
$\operatorname{cosec} \theta $Indeterminate2$\sqrt 2 $ $\dfrac{2}{{\sqrt 3 }}$1
$\cos \theta $1$\dfrac{{\sqrt 3 }}{2}$ $\dfrac{1}{{\sqrt 2 }}$$\dfrac{1}{2}$0
$\sec \theta $1$\dfrac{2}{{\sqrt 3 }}$ $\sqrt 2 $2Indeterminate
$\tan \theta $0$\dfrac{1}{{\sqrt 3 }}$ 1$\sqrt 3 $Indeterminate
$\cot \theta $Indeterminate$\sqrt 3 $ 1$\dfrac{1}{{\sqrt 3 }}$0