
If $\sqrt 3 \sin \theta = \cos \theta $ , find the value of $\dfrac{{\sin \theta \tan \theta \left( {1 + \cos \theta } \right)}}{{\sin \theta + \cos \theta }}$ .
Answer
485.1k+ views
Hint: Firstly, find the values of \[\sin \theta \] and $\cos \theta $ , using the relation $\sqrt 3 \sin \theta = \cos \theta $ .
Then, substitute the values of $\sin \theta ,\cos \theta ,\tan \theta $ in $\dfrac{{\sin \theta \tan \theta \left( {1 + \cos \theta } \right)}}{{\sin \theta + \cos \theta }}$ , to get the required answer.
Complete step-by-step answer:
It is given that, $\sqrt 3 \sin \theta = \cos \theta $ .
\[
\therefore \dfrac{{\sin \theta }}{{\cos \theta }} = \dfrac{1}{{\sqrt 3 }} \\
\Rightarrow \tan \theta = \dfrac{1}{{\sqrt 3 }} \\
\Rightarrow \theta = {\tan ^{ - 1}}\dfrac{1}{{\sqrt 3 }} \\
\Rightarrow \theta = 30^\circ \\
\]
Now, we need to find the value of $\dfrac{{\sin \theta \tan \theta \left( {1 + \cos \theta } \right)}}{{\sin \theta + \cos \theta }}$ . So, firstly we need to find the values of \[\sin \theta \] and $\cos \theta $ by putting \[\theta = 30^\circ \] .
$\Rightarrow \sin \theta = \sin 30^\circ = \dfrac{1}{2}$ and $\cos \theta = \cos 30^\circ = \dfrac{{\sqrt 3 }}{2}$ .
Thus, we get $\tan \theta = \dfrac{1}{{\sqrt 3 }},\sin \theta = \dfrac{1}{2}$ and $\cos \theta = \dfrac{{\sqrt 3 }}{2}$ .
Now, we will substitute the values $\tan \theta = \dfrac{1}{{\sqrt 3 }},\sin \theta = \dfrac{1}{2}$ and $\cos \theta = \dfrac{{\sqrt 3 }}{2}$ in $\dfrac{{\sin \theta \tan \theta \left( {1 + \cos \theta } \right)}}{{\sin \theta + \cos \theta }}$ , to get the required answer.
$
\Rightarrow \dfrac{{\sin \theta \tan \theta \left( {1 + \cos \theta } \right)}}{{\sin \theta + \cos \theta }} = \dfrac{{\left( {\dfrac{1}{2}} \right)\left( {\dfrac{1}{{\sqrt 3 }}} \right)\left( {1 + \dfrac{{\sqrt 3 }}{2}} \right)}}{{\dfrac{1}{2} + \dfrac{{\sqrt 3 }}{2}}} \\
= \dfrac{{\dfrac{1}{{2\sqrt 3 }}\left( {\dfrac{{2 + \sqrt 3 }}{2}} \right)}}{{\dfrac{{1 + \sqrt 3 }}{2}}} \\
= \dfrac{1}{{2\sqrt 3 }} \times \dfrac{{2 + \sqrt 3 }}{{1 + \sqrt 3 }} \\
= \dfrac{{2 + \sqrt 3 }}{{2\sqrt 3 \left( {1 + \sqrt 3 } \right)}} \\
$
Thus, we get the value $\dfrac{{\sin \theta \tan \theta \left( {1 + \cos \theta } \right)}}{{\sin \theta + \cos \theta }} = \dfrac{{2 + \sqrt 3 }}{{2\sqrt 3 \left( {1 + \sqrt 3 } \right)}}$ .
Note: Important table to be remembered:
Then, substitute the values of $\sin \theta ,\cos \theta ,\tan \theta $ in $\dfrac{{\sin \theta \tan \theta \left( {1 + \cos \theta } \right)}}{{\sin \theta + \cos \theta }}$ , to get the required answer.
Complete step-by-step answer:
It is given that, $\sqrt 3 \sin \theta = \cos \theta $ .
\[
\therefore \dfrac{{\sin \theta }}{{\cos \theta }} = \dfrac{1}{{\sqrt 3 }} \\
\Rightarrow \tan \theta = \dfrac{1}{{\sqrt 3 }} \\
\Rightarrow \theta = {\tan ^{ - 1}}\dfrac{1}{{\sqrt 3 }} \\
\Rightarrow \theta = 30^\circ \\
\]
Now, we need to find the value of $\dfrac{{\sin \theta \tan \theta \left( {1 + \cos \theta } \right)}}{{\sin \theta + \cos \theta }}$ . So, firstly we need to find the values of \[\sin \theta \] and $\cos \theta $ by putting \[\theta = 30^\circ \] .
$\Rightarrow \sin \theta = \sin 30^\circ = \dfrac{1}{2}$ and $\cos \theta = \cos 30^\circ = \dfrac{{\sqrt 3 }}{2}$ .
Thus, we get $\tan \theta = \dfrac{1}{{\sqrt 3 }},\sin \theta = \dfrac{1}{2}$ and $\cos \theta = \dfrac{{\sqrt 3 }}{2}$ .
Now, we will substitute the values $\tan \theta = \dfrac{1}{{\sqrt 3 }},\sin \theta = \dfrac{1}{2}$ and $\cos \theta = \dfrac{{\sqrt 3 }}{2}$ in $\dfrac{{\sin \theta \tan \theta \left( {1 + \cos \theta } \right)}}{{\sin \theta + \cos \theta }}$ , to get the required answer.
$
\Rightarrow \dfrac{{\sin \theta \tan \theta \left( {1 + \cos \theta } \right)}}{{\sin \theta + \cos \theta }} = \dfrac{{\left( {\dfrac{1}{2}} \right)\left( {\dfrac{1}{{\sqrt 3 }}} \right)\left( {1 + \dfrac{{\sqrt 3 }}{2}} \right)}}{{\dfrac{1}{2} + \dfrac{{\sqrt 3 }}{2}}} \\
= \dfrac{{\dfrac{1}{{2\sqrt 3 }}\left( {\dfrac{{2 + \sqrt 3 }}{2}} \right)}}{{\dfrac{{1 + \sqrt 3 }}{2}}} \\
= \dfrac{1}{{2\sqrt 3 }} \times \dfrac{{2 + \sqrt 3 }}{{1 + \sqrt 3 }} \\
= \dfrac{{2 + \sqrt 3 }}{{2\sqrt 3 \left( {1 + \sqrt 3 } \right)}} \\
$
Thus, we get the value $\dfrac{{\sin \theta \tan \theta \left( {1 + \cos \theta } \right)}}{{\sin \theta + \cos \theta }} = \dfrac{{2 + \sqrt 3 }}{{2\sqrt 3 \left( {1 + \sqrt 3 } \right)}}$ .
Note: Important table to be remembered:
$0^\circ $ | $30^\circ $ | $45^\circ $ | $60^\circ $ | $90^\circ $ | |
$\sin \theta $ | 0 | $\dfrac{1}{2}$ | $\dfrac{1}{{\sqrt 2 }}$ | $\dfrac{{\sqrt 3 }}{2}$ | 1 |
$\operatorname{cosec} \theta $ | Indeterminate | 2 | $\sqrt 2 $ | $\dfrac{2}{{\sqrt 3 }}$ | 1 |
$\cos \theta $ | 1 | $\dfrac{{\sqrt 3 }}{2}$ | $\dfrac{1}{{\sqrt 2 }}$ | $\dfrac{1}{2}$ | 0 |
$\sec \theta $ | 1 | $\dfrac{2}{{\sqrt 3 }}$ | $\sqrt 2 $ | 2 | Indeterminate |
$\tan \theta $ | 0 | $\dfrac{1}{{\sqrt 3 }}$ | 1 | $\sqrt 3 $ | Indeterminate |
$\cot \theta $ | Indeterminate | $\sqrt 3 $ | 1 | $\dfrac{1}{{\sqrt 3 }}$ | 0 |
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

State and prove Bernoullis theorem class 11 physics CBSE

Raindrops are spherical because of A Gravitational class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Why is steel more elastic than rubber class 11 physics CBSE

Explain why a There is no atmosphere on the moon b class 11 physics CBSE
