
If $\sqrt 3 \sin \theta = \cos \theta $ , find the value of $\dfrac{{\sin \theta \tan \theta \left( {1 + \cos \theta } \right)}}{{\sin \theta + \cos \theta }}$ .
Answer
566.7k+ views
Hint: Firstly, find the values of \[\sin \theta \] and $\cos \theta $ , using the relation $\sqrt 3 \sin \theta = \cos \theta $ .
Then, substitute the values of $\sin \theta ,\cos \theta ,\tan \theta $ in $\dfrac{{\sin \theta \tan \theta \left( {1 + \cos \theta } \right)}}{{\sin \theta + \cos \theta }}$ , to get the required answer.
Complete step-by-step answer:
It is given that, $\sqrt 3 \sin \theta = \cos \theta $ .
\[
\therefore \dfrac{{\sin \theta }}{{\cos \theta }} = \dfrac{1}{{\sqrt 3 }} \\
\Rightarrow \tan \theta = \dfrac{1}{{\sqrt 3 }} \\
\Rightarrow \theta = {\tan ^{ - 1}}\dfrac{1}{{\sqrt 3 }} \\
\Rightarrow \theta = 30^\circ \\
\]
Now, we need to find the value of $\dfrac{{\sin \theta \tan \theta \left( {1 + \cos \theta } \right)}}{{\sin \theta + \cos \theta }}$ . So, firstly we need to find the values of \[\sin \theta \] and $\cos \theta $ by putting \[\theta = 30^\circ \] .
$\Rightarrow \sin \theta = \sin 30^\circ = \dfrac{1}{2}$ and $\cos \theta = \cos 30^\circ = \dfrac{{\sqrt 3 }}{2}$ .
Thus, we get $\tan \theta = \dfrac{1}{{\sqrt 3 }},\sin \theta = \dfrac{1}{2}$ and $\cos \theta = \dfrac{{\sqrt 3 }}{2}$ .
Now, we will substitute the values $\tan \theta = \dfrac{1}{{\sqrt 3 }},\sin \theta = \dfrac{1}{2}$ and $\cos \theta = \dfrac{{\sqrt 3 }}{2}$ in $\dfrac{{\sin \theta \tan \theta \left( {1 + \cos \theta } \right)}}{{\sin \theta + \cos \theta }}$ , to get the required answer.
$
\Rightarrow \dfrac{{\sin \theta \tan \theta \left( {1 + \cos \theta } \right)}}{{\sin \theta + \cos \theta }} = \dfrac{{\left( {\dfrac{1}{2}} \right)\left( {\dfrac{1}{{\sqrt 3 }}} \right)\left( {1 + \dfrac{{\sqrt 3 }}{2}} \right)}}{{\dfrac{1}{2} + \dfrac{{\sqrt 3 }}{2}}} \\
= \dfrac{{\dfrac{1}{{2\sqrt 3 }}\left( {\dfrac{{2 + \sqrt 3 }}{2}} \right)}}{{\dfrac{{1 + \sqrt 3 }}{2}}} \\
= \dfrac{1}{{2\sqrt 3 }} \times \dfrac{{2 + \sqrt 3 }}{{1 + \sqrt 3 }} \\
= \dfrac{{2 + \sqrt 3 }}{{2\sqrt 3 \left( {1 + \sqrt 3 } \right)}} \\
$
Thus, we get the value $\dfrac{{\sin \theta \tan \theta \left( {1 + \cos \theta } \right)}}{{\sin \theta + \cos \theta }} = \dfrac{{2 + \sqrt 3 }}{{2\sqrt 3 \left( {1 + \sqrt 3 } \right)}}$ .
Note: Important table to be remembered:
Then, substitute the values of $\sin \theta ,\cos \theta ,\tan \theta $ in $\dfrac{{\sin \theta \tan \theta \left( {1 + \cos \theta } \right)}}{{\sin \theta + \cos \theta }}$ , to get the required answer.
Complete step-by-step answer:
It is given that, $\sqrt 3 \sin \theta = \cos \theta $ .
\[
\therefore \dfrac{{\sin \theta }}{{\cos \theta }} = \dfrac{1}{{\sqrt 3 }} \\
\Rightarrow \tan \theta = \dfrac{1}{{\sqrt 3 }} \\
\Rightarrow \theta = {\tan ^{ - 1}}\dfrac{1}{{\sqrt 3 }} \\
\Rightarrow \theta = 30^\circ \\
\]
Now, we need to find the value of $\dfrac{{\sin \theta \tan \theta \left( {1 + \cos \theta } \right)}}{{\sin \theta + \cos \theta }}$ . So, firstly we need to find the values of \[\sin \theta \] and $\cos \theta $ by putting \[\theta = 30^\circ \] .
$\Rightarrow \sin \theta = \sin 30^\circ = \dfrac{1}{2}$ and $\cos \theta = \cos 30^\circ = \dfrac{{\sqrt 3 }}{2}$ .
Thus, we get $\tan \theta = \dfrac{1}{{\sqrt 3 }},\sin \theta = \dfrac{1}{2}$ and $\cos \theta = \dfrac{{\sqrt 3 }}{2}$ .
Now, we will substitute the values $\tan \theta = \dfrac{1}{{\sqrt 3 }},\sin \theta = \dfrac{1}{2}$ and $\cos \theta = \dfrac{{\sqrt 3 }}{2}$ in $\dfrac{{\sin \theta \tan \theta \left( {1 + \cos \theta } \right)}}{{\sin \theta + \cos \theta }}$ , to get the required answer.
$
\Rightarrow \dfrac{{\sin \theta \tan \theta \left( {1 + \cos \theta } \right)}}{{\sin \theta + \cos \theta }} = \dfrac{{\left( {\dfrac{1}{2}} \right)\left( {\dfrac{1}{{\sqrt 3 }}} \right)\left( {1 + \dfrac{{\sqrt 3 }}{2}} \right)}}{{\dfrac{1}{2} + \dfrac{{\sqrt 3 }}{2}}} \\
= \dfrac{{\dfrac{1}{{2\sqrt 3 }}\left( {\dfrac{{2 + \sqrt 3 }}{2}} \right)}}{{\dfrac{{1 + \sqrt 3 }}{2}}} \\
= \dfrac{1}{{2\sqrt 3 }} \times \dfrac{{2 + \sqrt 3 }}{{1 + \sqrt 3 }} \\
= \dfrac{{2 + \sqrt 3 }}{{2\sqrt 3 \left( {1 + \sqrt 3 } \right)}} \\
$
Thus, we get the value $\dfrac{{\sin \theta \tan \theta \left( {1 + \cos \theta } \right)}}{{\sin \theta + \cos \theta }} = \dfrac{{2 + \sqrt 3 }}{{2\sqrt 3 \left( {1 + \sqrt 3 } \right)}}$ .
Note: Important table to be remembered:
| $0^\circ $ | $30^\circ $ | $45^\circ $ | $60^\circ $ | $90^\circ $ | |
| $\sin \theta $ | 0 | $\dfrac{1}{2}$ | $\dfrac{1}{{\sqrt 2 }}$ | $\dfrac{{\sqrt 3 }}{2}$ | 1 |
| $\operatorname{cosec} \theta $ | Indeterminate | 2 | $\sqrt 2 $ | $\dfrac{2}{{\sqrt 3 }}$ | 1 |
| $\cos \theta $ | 1 | $\dfrac{{\sqrt 3 }}{2}$ | $\dfrac{1}{{\sqrt 2 }}$ | $\dfrac{1}{2}$ | 0 |
| $\sec \theta $ | 1 | $\dfrac{2}{{\sqrt 3 }}$ | $\sqrt 2 $ | 2 | Indeterminate |
| $\tan \theta $ | 0 | $\dfrac{1}{{\sqrt 3 }}$ | 1 | $\sqrt 3 $ | Indeterminate |
| $\cot \theta $ | Indeterminate | $\sqrt 3 $ | 1 | $\dfrac{1}{{\sqrt 3 }}$ | 0 |
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

