
If \[{S_n} = \sum\limits_{r = 1}^n {\dfrac{{1 + 2 + {2^2} + \ldots \ldots {\rm{upto\, }}r\,{\rm{ terms}}}}{{{2^r}}}} \], then \[{S_n}\] is equal to
(a) \[2n - \left( {n + 1} \right)\]
(b) \[1 - \dfrac{1}{{{2^n}}}\]
(c) \[n - 1 + \dfrac{1}{{{2^n}}}\]
(d) \[1 + \dfrac{1}{{{2^n}}}\]
Answer
558k+ views
Hint: Here, we need to find the value of \[{S_n}\]. We will use the formula for sum of \[n\] terms of a geometric progression to simplify the given equation, and thus, find which of the given options is the correct value of \[{S_n}\]. A geometric progression is a series of numbers in which each successive number is the product of the previous number and a fixed ratio.
Formula Used:
We will use the formula of the sum of \[n\] terms of a G.P. is given by the formula \[\dfrac{{a\left( {{R^n} - 1} \right)}}{{R - 1}}\], where \[a\] is the first term, \[R\] is the common ratio, and \[n\] is the number of terms of the G.P.
Complete step-by-step answer:
We will simplify the given equation \[{S_n} = \sum\limits_{r = 1}^n {\dfrac{{1 + 2 + {2^2} + \ldots \ldots {\rm{upto\, }}r\,{\rm{ terms}}}}{{{2^r}}}} \] to find the value of \[{S_n}\].
The numerator of the expression is \[1 + 2 + {2^2} + \ldots \ldots {\rm{upto\, }}r\,{\rm{ terms}}\].
Each successive term is equal to the product of 2, and the previous term.
Thus, we can observe that this series forms a geometric progression where the first term is 1, and the common ratio is 2.
Now, we will find the sum of this G.P. using \[\dfrac{{a\left( {{R^n} - 1} \right)}}{{R - 1}}\].
The first term of the G.P. is 1.
Thus, we get
\[a = 1\]
The common ratio of the G.P. is 2.
Thus, we get
\[R = 2\]
The number of terms in the G.P. is \[r\].
Thus, we get
\[n = r\]
Substituting \[n = r\], \[R = 2\], and \[a = 1\] in the formula for sum of terms of a G.P., \[\dfrac{{a\left( {{R^n} - 1} \right)}}{{R - 1}}\], we get
\[ \Rightarrow 1 + 2 + {2^2} + \ldots \ldots {\rm{upto\, }}r\,{\rm{ terms}} = \dfrac{{1\left( {{2^r} - 1} \right)}}{{2 - 1}}\]
Simplifying the expression, we get
\[\begin{array}{l} \Rightarrow 1 + 2 + {2^2} + \ldots \ldots {\rm{upto\, }}r\,{\rm{ terms}} = \dfrac{{{2^r} - 1}}{1}\\ \Rightarrow 1 + 2 + {2^2} + \ldots \ldots {\rm{upto\, }}r\,{\rm{ terms}} = {2^r} - 1\end{array}\]
Substituting \[1 + 2 + {2^2} + \ldots \ldots {\rm{upto\, }}r\,{\rm{ terms}} = {2^r} - 1\] in the equation for the sum \[{S_n} = \sum\limits_{r = 1}^n {\dfrac{{1 + 2 + {2^2} + \ldots \ldots {\rm{upto\, }}r\,{\rm{ terms}}}}{{{2^r}}}} \], we get
\[ \Rightarrow {S_n} = \sum\limits_{r = 1}^n {\dfrac{{{2^r} - 1}}{{{2^r}}}} \]
Rewriting the expression by splitting the L.C.M., we get
\[ \Rightarrow {S_n} = \sum\limits_{r = 1}^n {\left( {\dfrac{{{2^r}}}{{{2^r}}} - \dfrac{1}{{{2^r}}}} \right)} \]
Simplifying the expression, we get
\[ \Rightarrow {S_n} = \sum\limits_{r = 1}^n {\left( {1 - \dfrac{1}{{{2^r}}}} \right)} \]
We know that an expression of the form \[\sum\limits_{x = 1}^n {\left[ {f\left( x \right) - g\left( x \right)} \right]} \] can be written as \[\sum\limits_{x = 1}^n {f\left( x \right)} - \sum\limits_{x = 1}^n {g\left( x \right)} \].
Therefore, rewriting the expression, we get
\[ \Rightarrow {S_n} = \sum\limits_{r = 1}^n {\left( 1 \right)} - \sum\limits_{r = 1}^n {\left( {\dfrac{1}{{{2^r}}}} \right)} \]
Expanding both the sums, we get
\[ \Rightarrow {S_n} = \left( {1 + 1 + 1 + \ldots \ldots {\rm{upto\, }}n\,{\rm{ terms}}} \right) - \left( {\dfrac{1}{{{2^1}}} + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^3}}} + \ldots \ldots {\rm{upto\, }}n\,{\rm{ terms}}} \right)\]
In the first time, 1 is added \[n\] times. This repeated addition can be denoted as the product of 1 and \[n\].
Therefore, we get
\[\begin{array}{l} \Rightarrow {S_n} = \left( {1 \times n} \right) - \left( {\dfrac{1}{{{2^1}}} + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^3}}} + \ldots \ldots {\rm{upto\, }}n\,{\rm{ terms}}} \right)\\
\Rightarrow {S_n} = n - \left( {\dfrac{1}{2} + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^3}}} + \ldots \ldots {\rm{upto\, }}n\,{\rm{ terms}}} \right)\end{array}\]
The second sum in the expression is \[\dfrac{1}{2} + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^3}}} + \ldots \ldots {\rm{upto \,}}n\,{\rm{ terms}}\].
Each successive term is equal to the product of \[\dfrac{1}{2}\], and the previous term.
Thus, we can observe that this series forms a geometric progression where the first term is \[\dfrac{1}{2}\], and the common ratio is \[\dfrac{1}{2}\].
Now, we will find the sum of this G.P.
The first term of the G.P. is \[\dfrac{1}{2}\].
Thus, we get
\[a = \dfrac{1}{2}\]
The common ratio of the G.P. is \[\dfrac{1}{2}\].
Thus, we get
\[R = \dfrac{1}{2}\]
The number of terms in the G.P. is \[n\].
Substituting \[R = \dfrac{1}{2}\] and \[a = \dfrac{1}{2}\] in the formula for sum of terms of a G.P., we get
\[ \Rightarrow \dfrac{1}{2} + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^3}}} + \ldots \ldots {\rm{upto\, }}n\,{\rm{ terms}} = \dfrac{{\dfrac{1}{2}\left[ {{{\left( {\dfrac{1}{2}} \right)}^n} - 1} \right]}}{{\dfrac{1}{2} - 1}}\]
Simplifying the expression, we get
\[\begin{array}{l} \Rightarrow \dfrac{1}{2} + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^3}}} + \ldots \ldots {\rm{upto\, }}n\,{\rm{ terms}} = \dfrac{{\dfrac{1}{2}\left[ {{{\left( {\dfrac{1}{2}} \right)}^n} - 1} \right]}}{{ - \dfrac{1}{2}}}\\ \Rightarrow \dfrac{1}{2} + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^3}}} + \ldots \ldots {\rm{upto\, }}n\,{\rm{ terms}} = - \left[ {{{\left( {\dfrac{1}{2}} \right)}^n} - 1} \right]\\ \Rightarrow \dfrac{1}{2} + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^3}}} + \ldots \ldots {\rm{upto\, }}n\,{\rm{ terms}} = 1 - {\left( {\dfrac{1}{2}} \right)^n}\end{array}\]
An expression of the form \[{\left( {\dfrac{a}{b}} \right)^m}\] can be written as \[\dfrac{{{a^m}}}{{{b^m}}}\]. This is a rule of exponent.
Using the rule of exponent to rewrite \[{\left( {\dfrac{1}{2}} \right)^n}\], we get
\[ \Rightarrow \dfrac{1}{2} + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^3}}} + \ldots \ldots {\rm{upto\, }}n\,{\rm{ terms}} = 1 - \dfrac{{{1^n}}}{{{2^n}}}\]
The number 1 raised to any real exponent is equal to 1.
Therefore, we get
\[ \Rightarrow \dfrac{1}{2} + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^3}}} + \ldots \ldots {\rm{upto\, }}n\,{\rm{ terms}} = 1 - \dfrac{1}{{{2^n}}}\]
Finally, substituting \[\dfrac{1}{2} + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^3}}} + \ldots \ldots {\rm{upto\, }}n\,{\rm{ terms}} = 1 - \dfrac{1}{{{2^n}}}\] in the equation \[{S_n} = n - \left( {\dfrac{1}{2} + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^3}}} + \ldots \ldots {\rm{upto\, }}n\,{\rm{ terms}}} \right)\], we get
\[ \Rightarrow {S_n} = n - \left( {1 - \dfrac{1}{{{2^n}}}} \right)\]
Rewriting the expression, we get
\[\therefore {{S}_{n}}=n-1+\dfrac{1}{{{2}^{n}}}\]
Therefore, the sum \[{S_n}\] is equal to \[n - 1 + \dfrac{1}{{{2^n}}}\].
Thus, the correct option is option (c).
Note: In geometric progression, consecutive numbers differ by a fixed ratio and this fixed ratio is called the common ratio.
A common mistake is to use the formula for the sum of a geometric progression with infinite terms, that is \[\dfrac{a}{{1 - R}}\]. This is incorrect since it is given that the sum extends up to \[r\] or \[n\] terms, and thus, has a finite number of terms.
Formula Used:
We will use the formula of the sum of \[n\] terms of a G.P. is given by the formula \[\dfrac{{a\left( {{R^n} - 1} \right)}}{{R - 1}}\], where \[a\] is the first term, \[R\] is the common ratio, and \[n\] is the number of terms of the G.P.
Complete step-by-step answer:
We will simplify the given equation \[{S_n} = \sum\limits_{r = 1}^n {\dfrac{{1 + 2 + {2^2} + \ldots \ldots {\rm{upto\, }}r\,{\rm{ terms}}}}{{{2^r}}}} \] to find the value of \[{S_n}\].
The numerator of the expression is \[1 + 2 + {2^2} + \ldots \ldots {\rm{upto\, }}r\,{\rm{ terms}}\].
Each successive term is equal to the product of 2, and the previous term.
Thus, we can observe that this series forms a geometric progression where the first term is 1, and the common ratio is 2.
Now, we will find the sum of this G.P. using \[\dfrac{{a\left( {{R^n} - 1} \right)}}{{R - 1}}\].
The first term of the G.P. is 1.
Thus, we get
\[a = 1\]
The common ratio of the G.P. is 2.
Thus, we get
\[R = 2\]
The number of terms in the G.P. is \[r\].
Thus, we get
\[n = r\]
Substituting \[n = r\], \[R = 2\], and \[a = 1\] in the formula for sum of terms of a G.P., \[\dfrac{{a\left( {{R^n} - 1} \right)}}{{R - 1}}\], we get
\[ \Rightarrow 1 + 2 + {2^2} + \ldots \ldots {\rm{upto\, }}r\,{\rm{ terms}} = \dfrac{{1\left( {{2^r} - 1} \right)}}{{2 - 1}}\]
Simplifying the expression, we get
\[\begin{array}{l} \Rightarrow 1 + 2 + {2^2} + \ldots \ldots {\rm{upto\, }}r\,{\rm{ terms}} = \dfrac{{{2^r} - 1}}{1}\\ \Rightarrow 1 + 2 + {2^2} + \ldots \ldots {\rm{upto\, }}r\,{\rm{ terms}} = {2^r} - 1\end{array}\]
Substituting \[1 + 2 + {2^2} + \ldots \ldots {\rm{upto\, }}r\,{\rm{ terms}} = {2^r} - 1\] in the equation for the sum \[{S_n} = \sum\limits_{r = 1}^n {\dfrac{{1 + 2 + {2^2} + \ldots \ldots {\rm{upto\, }}r\,{\rm{ terms}}}}{{{2^r}}}} \], we get
\[ \Rightarrow {S_n} = \sum\limits_{r = 1}^n {\dfrac{{{2^r} - 1}}{{{2^r}}}} \]
Rewriting the expression by splitting the L.C.M., we get
\[ \Rightarrow {S_n} = \sum\limits_{r = 1}^n {\left( {\dfrac{{{2^r}}}{{{2^r}}} - \dfrac{1}{{{2^r}}}} \right)} \]
Simplifying the expression, we get
\[ \Rightarrow {S_n} = \sum\limits_{r = 1}^n {\left( {1 - \dfrac{1}{{{2^r}}}} \right)} \]
We know that an expression of the form \[\sum\limits_{x = 1}^n {\left[ {f\left( x \right) - g\left( x \right)} \right]} \] can be written as \[\sum\limits_{x = 1}^n {f\left( x \right)} - \sum\limits_{x = 1}^n {g\left( x \right)} \].
Therefore, rewriting the expression, we get
\[ \Rightarrow {S_n} = \sum\limits_{r = 1}^n {\left( 1 \right)} - \sum\limits_{r = 1}^n {\left( {\dfrac{1}{{{2^r}}}} \right)} \]
Expanding both the sums, we get
\[ \Rightarrow {S_n} = \left( {1 + 1 + 1 + \ldots \ldots {\rm{upto\, }}n\,{\rm{ terms}}} \right) - \left( {\dfrac{1}{{{2^1}}} + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^3}}} + \ldots \ldots {\rm{upto\, }}n\,{\rm{ terms}}} \right)\]
In the first time, 1 is added \[n\] times. This repeated addition can be denoted as the product of 1 and \[n\].
Therefore, we get
\[\begin{array}{l} \Rightarrow {S_n} = \left( {1 \times n} \right) - \left( {\dfrac{1}{{{2^1}}} + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^3}}} + \ldots \ldots {\rm{upto\, }}n\,{\rm{ terms}}} \right)\\
\Rightarrow {S_n} = n - \left( {\dfrac{1}{2} + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^3}}} + \ldots \ldots {\rm{upto\, }}n\,{\rm{ terms}}} \right)\end{array}\]
The second sum in the expression is \[\dfrac{1}{2} + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^3}}} + \ldots \ldots {\rm{upto \,}}n\,{\rm{ terms}}\].
Each successive term is equal to the product of \[\dfrac{1}{2}\], and the previous term.
Thus, we can observe that this series forms a geometric progression where the first term is \[\dfrac{1}{2}\], and the common ratio is \[\dfrac{1}{2}\].
Now, we will find the sum of this G.P.
The first term of the G.P. is \[\dfrac{1}{2}\].
Thus, we get
\[a = \dfrac{1}{2}\]
The common ratio of the G.P. is \[\dfrac{1}{2}\].
Thus, we get
\[R = \dfrac{1}{2}\]
The number of terms in the G.P. is \[n\].
Substituting \[R = \dfrac{1}{2}\] and \[a = \dfrac{1}{2}\] in the formula for sum of terms of a G.P., we get
\[ \Rightarrow \dfrac{1}{2} + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^3}}} + \ldots \ldots {\rm{upto\, }}n\,{\rm{ terms}} = \dfrac{{\dfrac{1}{2}\left[ {{{\left( {\dfrac{1}{2}} \right)}^n} - 1} \right]}}{{\dfrac{1}{2} - 1}}\]
Simplifying the expression, we get
\[\begin{array}{l} \Rightarrow \dfrac{1}{2} + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^3}}} + \ldots \ldots {\rm{upto\, }}n\,{\rm{ terms}} = \dfrac{{\dfrac{1}{2}\left[ {{{\left( {\dfrac{1}{2}} \right)}^n} - 1} \right]}}{{ - \dfrac{1}{2}}}\\ \Rightarrow \dfrac{1}{2} + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^3}}} + \ldots \ldots {\rm{upto\, }}n\,{\rm{ terms}} = - \left[ {{{\left( {\dfrac{1}{2}} \right)}^n} - 1} \right]\\ \Rightarrow \dfrac{1}{2} + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^3}}} + \ldots \ldots {\rm{upto\, }}n\,{\rm{ terms}} = 1 - {\left( {\dfrac{1}{2}} \right)^n}\end{array}\]
An expression of the form \[{\left( {\dfrac{a}{b}} \right)^m}\] can be written as \[\dfrac{{{a^m}}}{{{b^m}}}\]. This is a rule of exponent.
Using the rule of exponent to rewrite \[{\left( {\dfrac{1}{2}} \right)^n}\], we get
\[ \Rightarrow \dfrac{1}{2} + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^3}}} + \ldots \ldots {\rm{upto\, }}n\,{\rm{ terms}} = 1 - \dfrac{{{1^n}}}{{{2^n}}}\]
The number 1 raised to any real exponent is equal to 1.
Therefore, we get
\[ \Rightarrow \dfrac{1}{2} + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^3}}} + \ldots \ldots {\rm{upto\, }}n\,{\rm{ terms}} = 1 - \dfrac{1}{{{2^n}}}\]
Finally, substituting \[\dfrac{1}{2} + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^3}}} + \ldots \ldots {\rm{upto\, }}n\,{\rm{ terms}} = 1 - \dfrac{1}{{{2^n}}}\] in the equation \[{S_n} = n - \left( {\dfrac{1}{2} + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^3}}} + \ldots \ldots {\rm{upto\, }}n\,{\rm{ terms}}} \right)\], we get
\[ \Rightarrow {S_n} = n - \left( {1 - \dfrac{1}{{{2^n}}}} \right)\]
Rewriting the expression, we get
\[\therefore {{S}_{n}}=n-1+\dfrac{1}{{{2}^{n}}}\]
Therefore, the sum \[{S_n}\] is equal to \[n - 1 + \dfrac{1}{{{2^n}}}\].
Thus, the correct option is option (c).
Note: In geometric progression, consecutive numbers differ by a fixed ratio and this fixed ratio is called the common ratio.
A common mistake is to use the formula for the sum of a geometric progression with infinite terms, that is \[\dfrac{a}{{1 - R}}\]. This is incorrect since it is given that the sum extends up to \[r\] or \[n\] terms, and thus, has a finite number of terms.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

