Courses
Courses for Kids
Free study material
Free LIVE classes
More
Questions & Answers
seo-qna
LIVE
Join Vedantu’s FREE Mastercalss

If $\sin \theta$, $\cos \theta$ and $\tan \theta$ are in G.P. then find the value of $\cot^{6} \theta − \cot^{2} \theta$.

A. 1

B. 12

C. 2

D. 3


Answer
VerifiedVerified
367.5k+ views

Hint: Use the basic definition of GP and the necessary trigonometric identities to arrive at the answer.

 

Complete step-by-step answer:

Now, we know that if 3 terms a, b, c are in GP then we can write,

$\dfrac{b}{a} = \dfrac{c}{b} = r$, where r is the common ratio.

The above can also be written as

$\Rightarrow b^2 = ac \to (1)$

It is given that $\sin \theta$, $\cos \theta$, $\tan \theta$ are in GP, so from eqn (1), we can write,

$\cos^{2} \theta = \sin \theta \times \tan \theta \to (2)$

Now $\tan \theta = \dfrac{\sin \theta}{\cos \theta}$, substituting in equation (2), we get,

$\Rightarrow \cos^{2} \theta = \sin \theta \times {\dfrac{\sin \theta}{\cos \theta}}$

$\Rightarrow \cos^{2} \theta = \dfrac{\sin^{2} \theta}{\cos \theta}$

$\Rightarrow \dfrac{\sin^{2} \theta}{\cos^{3} \theta} =1 \to (3)$

It can be also rearranged as,

$\Rightarrow \dfrac{\cos^{2} \theta}{\sin^{2} \theta} = \dfrac{1}{\cos \theta} = \sec \theta$

$\Rightarrow \cot^{2} \theta = \sec \theta \to (4)  (\because \dfrac{\cos \theta}{\sin \theta} = \cot \theta)$

Now, we have to find the value of $\cot^{6} \theta - \cot^{2} \theta$

It can be written as, $(\cot^{2} \theta)^3 - \cot^{2} \theta$

Substituting from eqn (4), we get,

$\Rightarrow \sec^{3} \theta - \sec \theta$

Taking $\sec \theta$ common

$\Rightarrow \sec \theta (\sec^{2} \theta - 1) $

We know (from trigonometric identities) that $\sec^{2} \theta - 1 = \tan^{2} \theta$, we get

$\Rightarrow \sec \theta \times \tan^{2} \theta $

$\Rightarrow \dfrac{1}{\cos \theta} \times \dfrac{\sin^{2} \theta}{\cos^{2} \theta}$

$\Rightarrow \dfrac{\sin^{2} \theta}{\cos^{3} \theta}$

$= 1$ (from eqn. (3))

Hence the value of $\cot^{6} \theta - \cot^{2} \theta$ is 1.

 $\therefore$ Option A. is correct.

Note: Such problems, where more than one concept is involved can be solved easily by knowing the basics of those concepts. Using the necessary properties will solve these problems. Mistakes can be avoided while rearranging and substituting.


Last updated date: 20th Sep 2023
Total views: 367.5k
Views today: 3.67k