
If $\sin x = \dfrac{1}{4}$ , x is in the second quadrant. Find the value of $\sin \dfrac{x}{2}$ .
Answer
576k+ views
Hint: The value of sinx is given. Find cosx.
Given that x is in second quadrant i.e. $\dfrac{\pi }{2} < x \leqslant \pi $, ∴ cosx is negative.
So we first find cosx.
Now, note that $\cos x = 1 - 2{\sin ^2}\dfrac{x}{2}$, i.e. \[2{\sin ^2}\dfrac{x}{2} = 1 - \cos x\]
Therefore find $\sin \dfrac{x}{2}$.
Complete step-by-step answer:
Given, $\sin x = \dfrac{1}{4}$
Also, x is in the second quadrant. Therefore, $\dfrac{\pi }{2} < x \leqslant \pi $
We know,
${\sin ^2}x + {\cos ^2}x = 1$
$ \Rightarrow {\cos ^2}x = 1 - {\sin ^2}x$
On taking square root we get,
$ \Rightarrow \cos x = \pm \sqrt {1 - {{\sin }^2}x} $
On substituting the value of sinx we get,
$ \Rightarrow \cos x = \pm \sqrt {1 - {{\left( {\dfrac{1}{4}} \right)}^2}} $
On simplification we get,
$ \Rightarrow \cos x = \pm \sqrt {1 - \dfrac{1}{{16}}} = \pm \sqrt {\dfrac{{15}}{{16}}} $
Since, x lies in second quadrant, therefore cosx is negative,
$ \Rightarrow \cos x = - \dfrac{{\sqrt {15} }}{4}$
Now, we know
\[2{\sin ^2}\dfrac{x}{2} = 1 - \cos x\]
On dividing by 2 and taking square root we get,
\[ \Rightarrow \sin \dfrac{x}{2} = \pm \sqrt {\dfrac{{1 - \cos x}}{2}} \]
On substituting the value of cosx we get,
\[ \Rightarrow \sin \dfrac{x}{2} = \pm \sqrt {\dfrac{{1 - \left( { - \dfrac{{\sqrt {15} }}{4}} \right)}}{2}} \]
On simplification we get,
\[ \Rightarrow \sin \dfrac{x}{2} = \pm \sqrt {\dfrac{{1 + \dfrac{{\sqrt {15} }}{4}}}{2}} \]
As, \[\dfrac{\pi }{2}{\text{ < x}} \leqslant \pi \Rightarrow \dfrac{\pi }{4}{\text{ < }}\dfrac{x}{2} \leqslant \dfrac{\pi }{2}\] ,hence \[{\text{sin\;}}\dfrac{x}{2}\] positive as\[\dfrac{x}{2}\] is in the first quadrant
\[ \Rightarrow \sin \dfrac{x}{2} = \sqrt {\dfrac{{4 + \sqrt {15} }}{8}} \]
Therefore, the value of $\sin \dfrac{x}{2}$ is \[\sqrt {\dfrac{{4 + \sqrt {15} }}{8}} \].
Note: Note the following important formulae:
$\cos x = \dfrac{1}{{\sec x}}$ , $\sin x = \dfrac{1}{{\cos ecx}}$ , $\tan x = \dfrac{1}{{\cot x}}$
${\sin ^2}x + {\cos ^2}x = 1$
\[{\sec ^2}x - {\tan ^2}x = 1\]
\[{\operatorname{cosec} ^2}x - {\cot ^2}x = 1\]
$\sin ( - x) = - \sin x$
$\cos ( - x) = \cos x$
$\tan ( - x) = - \tan x$
$\sin \left( {2n\pi \pm x} \right) = \sin x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }$
$\cos \left( {2n\pi \pm x} \right) = \cos x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }$
$\tan \left( {n\pi \pm x} \right) = \tan x{\text{ , period }}\pi {\text{ or 18}}{0^ \circ }$
Sign convention:
$\sin 2x = 2\sin x\cos x$
$\cos 2x = {\cos ^2}x - {\sin ^2}x = 1 - 2{\sin ^2}x = 2{\cos ^2}x - 1$
$\tan 2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}} = \dfrac{2}{{\cot x - \tan x}}$
Given that x is in second quadrant i.e. $\dfrac{\pi }{2} < x \leqslant \pi $, ∴ cosx is negative.
So we first find cosx.
Now, note that $\cos x = 1 - 2{\sin ^2}\dfrac{x}{2}$, i.e. \[2{\sin ^2}\dfrac{x}{2} = 1 - \cos x\]
Therefore find $\sin \dfrac{x}{2}$.
Complete step-by-step answer:
Given, $\sin x = \dfrac{1}{4}$
Also, x is in the second quadrant. Therefore, $\dfrac{\pi }{2} < x \leqslant \pi $
We know,
${\sin ^2}x + {\cos ^2}x = 1$
$ \Rightarrow {\cos ^2}x = 1 - {\sin ^2}x$
On taking square root we get,
$ \Rightarrow \cos x = \pm \sqrt {1 - {{\sin }^2}x} $
On substituting the value of sinx we get,
$ \Rightarrow \cos x = \pm \sqrt {1 - {{\left( {\dfrac{1}{4}} \right)}^2}} $
On simplification we get,
$ \Rightarrow \cos x = \pm \sqrt {1 - \dfrac{1}{{16}}} = \pm \sqrt {\dfrac{{15}}{{16}}} $
Since, x lies in second quadrant, therefore cosx is negative,
$ \Rightarrow \cos x = - \dfrac{{\sqrt {15} }}{4}$
Now, we know
\[2{\sin ^2}\dfrac{x}{2} = 1 - \cos x\]
On dividing by 2 and taking square root we get,
\[ \Rightarrow \sin \dfrac{x}{2} = \pm \sqrt {\dfrac{{1 - \cos x}}{2}} \]
On substituting the value of cosx we get,
\[ \Rightarrow \sin \dfrac{x}{2} = \pm \sqrt {\dfrac{{1 - \left( { - \dfrac{{\sqrt {15} }}{4}} \right)}}{2}} \]
On simplification we get,
\[ \Rightarrow \sin \dfrac{x}{2} = \pm \sqrt {\dfrac{{1 + \dfrac{{\sqrt {15} }}{4}}}{2}} \]
As, \[\dfrac{\pi }{2}{\text{ < x}} \leqslant \pi \Rightarrow \dfrac{\pi }{4}{\text{ < }}\dfrac{x}{2} \leqslant \dfrac{\pi }{2}\] ,hence \[{\text{sin\;}}\dfrac{x}{2}\] positive as\[\dfrac{x}{2}\] is in the first quadrant
\[ \Rightarrow \sin \dfrac{x}{2} = \sqrt {\dfrac{{4 + \sqrt {15} }}{8}} \]
Therefore, the value of $\sin \dfrac{x}{2}$ is \[\sqrt {\dfrac{{4 + \sqrt {15} }}{8}} \].
Note: Note the following important formulae:
$\cos x = \dfrac{1}{{\sec x}}$ , $\sin x = \dfrac{1}{{\cos ecx}}$ , $\tan x = \dfrac{1}{{\cot x}}$
${\sin ^2}x + {\cos ^2}x = 1$
\[{\sec ^2}x - {\tan ^2}x = 1\]
\[{\operatorname{cosec} ^2}x - {\cot ^2}x = 1\]
$\sin ( - x) = - \sin x$
$\cos ( - x) = \cos x$
$\tan ( - x) = - \tan x$
$\sin \left( {2n\pi \pm x} \right) = \sin x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }$
$\cos \left( {2n\pi \pm x} \right) = \cos x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }$
$\tan \left( {n\pi \pm x} \right) = \tan x{\text{ , period }}\pi {\text{ or 18}}{0^ \circ }$
Sign convention:
$\sin 2x = 2\sin x\cos x$
$\cos 2x = {\cos ^2}x - {\sin ^2}x = 1 - 2{\sin ^2}x = 2{\cos ^2}x - 1$
$\tan 2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}} = \dfrac{2}{{\cot x - \tan x}}$
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

