
If $\sin x = \dfrac{1}{4}$ , x is in the second quadrant. Find the value of $\sin \dfrac{x}{2}$ .
Answer
510.6k+ views
Hint: The value of sinx is given. Find cosx.
Given that x is in second quadrant i.e. $\dfrac{\pi }{2} < x \leqslant \pi $, ∴ cosx is negative.
So we first find cosx.
Now, note that $\cos x = 1 - 2{\sin ^2}\dfrac{x}{2}$, i.e. \[2{\sin ^2}\dfrac{x}{2} = 1 - \cos x\]
Therefore find $\sin \dfrac{x}{2}$.
Complete step-by-step answer:
Given, $\sin x = \dfrac{1}{4}$
Also, x is in the second quadrant. Therefore, $\dfrac{\pi }{2} < x \leqslant \pi $
We know,
${\sin ^2}x + {\cos ^2}x = 1$
$ \Rightarrow {\cos ^2}x = 1 - {\sin ^2}x$
On taking square root we get,
$ \Rightarrow \cos x = \pm \sqrt {1 - {{\sin }^2}x} $
On substituting the value of sinx we get,
$ \Rightarrow \cos x = \pm \sqrt {1 - {{\left( {\dfrac{1}{4}} \right)}^2}} $
On simplification we get,
$ \Rightarrow \cos x = \pm \sqrt {1 - \dfrac{1}{{16}}} = \pm \sqrt {\dfrac{{15}}{{16}}} $
Since, x lies in second quadrant, therefore cosx is negative,
$ \Rightarrow \cos x = - \dfrac{{\sqrt {15} }}{4}$
Now, we know
\[2{\sin ^2}\dfrac{x}{2} = 1 - \cos x\]
On dividing by 2 and taking square root we get,
\[ \Rightarrow \sin \dfrac{x}{2} = \pm \sqrt {\dfrac{{1 - \cos x}}{2}} \]
On substituting the value of cosx we get,
\[ \Rightarrow \sin \dfrac{x}{2} = \pm \sqrt {\dfrac{{1 - \left( { - \dfrac{{\sqrt {15} }}{4}} \right)}}{2}} \]
On simplification we get,
\[ \Rightarrow \sin \dfrac{x}{2} = \pm \sqrt {\dfrac{{1 + \dfrac{{\sqrt {15} }}{4}}}{2}} \]
As, \[\dfrac{\pi }{2}{\text{ < x}} \leqslant \pi \Rightarrow \dfrac{\pi }{4}{\text{ < }}\dfrac{x}{2} \leqslant \dfrac{\pi }{2}\] ,hence \[{\text{sin\;}}\dfrac{x}{2}\] positive as\[\dfrac{x}{2}\] is in the first quadrant
\[ \Rightarrow \sin \dfrac{x}{2} = \sqrt {\dfrac{{4 + \sqrt {15} }}{8}} \]
Therefore, the value of $\sin \dfrac{x}{2}$ is \[\sqrt {\dfrac{{4 + \sqrt {15} }}{8}} \].
Note: Note the following important formulae:
$\cos x = \dfrac{1}{{\sec x}}$ , $\sin x = \dfrac{1}{{\cos ecx}}$ , $\tan x = \dfrac{1}{{\cot x}}$
${\sin ^2}x + {\cos ^2}x = 1$
\[{\sec ^2}x - {\tan ^2}x = 1\]
\[{\operatorname{cosec} ^2}x - {\cot ^2}x = 1\]
$\sin ( - x) = - \sin x$
$\cos ( - x) = \cos x$
$\tan ( - x) = - \tan x$
$\sin \left( {2n\pi \pm x} \right) = \sin x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }$
$\cos \left( {2n\pi \pm x} \right) = \cos x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }$
$\tan \left( {n\pi \pm x} \right) = \tan x{\text{ , period }}\pi {\text{ or 18}}{0^ \circ }$
Sign convention:
$\sin 2x = 2\sin x\cos x$
$\cos 2x = {\cos ^2}x - {\sin ^2}x = 1 - 2{\sin ^2}x = 2{\cos ^2}x - 1$
$\tan 2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}} = \dfrac{2}{{\cot x - \tan x}}$
Given that x is in second quadrant i.e. $\dfrac{\pi }{2} < x \leqslant \pi $, ∴ cosx is negative.
So we first find cosx.
Now, note that $\cos x = 1 - 2{\sin ^2}\dfrac{x}{2}$, i.e. \[2{\sin ^2}\dfrac{x}{2} = 1 - \cos x\]
Therefore find $\sin \dfrac{x}{2}$.
Complete step-by-step answer:
Given, $\sin x = \dfrac{1}{4}$
Also, x is in the second quadrant. Therefore, $\dfrac{\pi }{2} < x \leqslant \pi $
We know,
${\sin ^2}x + {\cos ^2}x = 1$
$ \Rightarrow {\cos ^2}x = 1 - {\sin ^2}x$
On taking square root we get,
$ \Rightarrow \cos x = \pm \sqrt {1 - {{\sin }^2}x} $
On substituting the value of sinx we get,
$ \Rightarrow \cos x = \pm \sqrt {1 - {{\left( {\dfrac{1}{4}} \right)}^2}} $
On simplification we get,
$ \Rightarrow \cos x = \pm \sqrt {1 - \dfrac{1}{{16}}} = \pm \sqrt {\dfrac{{15}}{{16}}} $
Since, x lies in second quadrant, therefore cosx is negative,
$ \Rightarrow \cos x = - \dfrac{{\sqrt {15} }}{4}$
Now, we know
\[2{\sin ^2}\dfrac{x}{2} = 1 - \cos x\]
On dividing by 2 and taking square root we get,
\[ \Rightarrow \sin \dfrac{x}{2} = \pm \sqrt {\dfrac{{1 - \cos x}}{2}} \]
On substituting the value of cosx we get,
\[ \Rightarrow \sin \dfrac{x}{2} = \pm \sqrt {\dfrac{{1 - \left( { - \dfrac{{\sqrt {15} }}{4}} \right)}}{2}} \]
On simplification we get,
\[ \Rightarrow \sin \dfrac{x}{2} = \pm \sqrt {\dfrac{{1 + \dfrac{{\sqrt {15} }}{4}}}{2}} \]
As, \[\dfrac{\pi }{2}{\text{ < x}} \leqslant \pi \Rightarrow \dfrac{\pi }{4}{\text{ < }}\dfrac{x}{2} \leqslant \dfrac{\pi }{2}\] ,hence \[{\text{sin\;}}\dfrac{x}{2}\] positive as\[\dfrac{x}{2}\] is in the first quadrant
\[ \Rightarrow \sin \dfrac{x}{2} = \sqrt {\dfrac{{4 + \sqrt {15} }}{8}} \]
Therefore, the value of $\sin \dfrac{x}{2}$ is \[\sqrt {\dfrac{{4 + \sqrt {15} }}{8}} \].
Note: Note the following important formulae:
$\cos x = \dfrac{1}{{\sec x}}$ , $\sin x = \dfrac{1}{{\cos ecx}}$ , $\tan x = \dfrac{1}{{\cot x}}$
${\sin ^2}x + {\cos ^2}x = 1$
\[{\sec ^2}x - {\tan ^2}x = 1\]
\[{\operatorname{cosec} ^2}x - {\cot ^2}x = 1\]
$\sin ( - x) = - \sin x$
$\cos ( - x) = \cos x$
$\tan ( - x) = - \tan x$
$\sin \left( {2n\pi \pm x} \right) = \sin x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }$
$\cos \left( {2n\pi \pm x} \right) = \cos x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }$
$\tan \left( {n\pi \pm x} \right) = \tan x{\text{ , period }}\pi {\text{ or 18}}{0^ \circ }$
Sign convention:

$\sin 2x = 2\sin x\cos x$
$\cos 2x = {\cos ^2}x - {\sin ^2}x = 1 - 2{\sin ^2}x = 2{\cos ^2}x - 1$
$\tan 2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}} = \dfrac{2}{{\cot x - \tan x}}$
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Which of the following is nitrogenfixing algae a Nostoc class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
