
If $\sin \theta = \dfrac{{12}}{{13}}$ , find the value of $\dfrac{{{{\sin }^2}\theta - {{\cos }^2}\theta }}{{2\sin \theta \cos \theta }} \times \dfrac{1}{{{{\tan }^2}\theta }}$
Answer
614.7k+ views
Hint: We are provided with the value of $\sin \theta $. So we will first convert the equation in terms of $\sin \theta $by using basic trigonometric equations and then by putting the value of $\sin \theta $we’ll get the required result.
Complete step-by-step answer:
Given $\sin \theta = \dfrac{{12}}{{13}}$
$\dfrac{{{{\sin }^2}\theta - {{\cos }^2}\theta }}{{2\sin \theta \cos \theta }} \times \dfrac{1}{{{{\tan }^2}\theta }}$…………………….(1)
Converting the equation in terms of sin by replacing $\cos \theta $and $\tan \theta $ by using $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ and${\cos ^2}\theta = 1 - {\sin ^2}\theta $
then the equation (1) becomes
$ = \dfrac{{{{\sin }^2}\theta - \left( {1 - {{\sin }^2}\theta } \right)}}{{2\sin \theta \cos \theta }} \times \dfrac{{{{\cos }^2}\theta }}{{{{\sin }^2}\theta }}$
$ = \dfrac{{{{\sin }^2}\theta - 1 + {{\sin }^2}\theta }}{{2\sin \theta \cos \theta }} \times \dfrac{{{{\cos }^2}\theta }}{{{{\sin }^2}\theta }}$
after using simple math, we get
$ = \dfrac{{2{{\sin }^2}\theta - 1}}{{2{{\sin }^3}\theta }} \times \cos \theta $
Putting the value of $\cos \theta $=\[\sqrt {1 - {{\sin }^2}\theta } \] we get
$ = \dfrac{{2{{\sin }^2}\theta - 1}}{{2{{\sin }^3}\theta }} \times \sqrt {1 - {{\sin }^2}\theta } $
Now we have found the equation in terms of $\sin \theta $. So putting the value of $\sin \theta $ in above equation
$ = \dfrac{{2{{\left( {\dfrac{{12}}{{13}}} \right)}^2} - 1}}{{2{{\left( {\dfrac{{12}}{{13}}} \right)}^3}}} \times \sqrt {1 - {{\left( {\dfrac{{12}}{{13}}} \right)}^2}} $
On taking the LCM as \[ \left( {13} \right)^2\]
$ = \dfrac{{2{{\left( {12} \right)}^2} - {{\left( {13} \right)}^2}}}{{2 \times {{\left( {13} \right)}^2} \times {{\left( {\dfrac{{12}}{{13}}} \right)}^3}}} \times \sqrt {\dfrac{{{{\left( {13} \right)}^2} - {{\left( {12} \right)}^2}}}{{{{\left( {13} \right)}^2}}}} $
on putting the value of square of 12 and 13, we get
=$\dfrac{{288 - 169}}{{2 \times \dfrac{{{{\left( {12} \right)}^3}}}{{13}}}} \times \dfrac{{\sqrt {169 - 144} }}{{13}}$
$ = \dfrac{{119}}{{2 \times 1728}} \times \sqrt {25} $
$ = \dfrac{{119 \times 5}}{{3456}}$
$ = \dfrac{{595}}{{3456}}$
So value of $\dfrac{{{{\sin }^2}\theta - {{\cos }^2}\theta }}{{2\sin \theta \cos \theta }} \times \dfrac{1}{{{{\tan }^2}\theta }}$ is $\dfrac{{595}}{{3456}}$.
Note- Some basic trigonometric equation should be in our mind which is very useful for converting the equation
${\sin ^2}\theta + {\cos ^2}\theta = 1$
${\sec ^2}\theta - {\tan ^2}\theta = 1$
$\cos e{c^2}\theta - {\cot ^2}\theta = 1$
Complete step-by-step answer:
Given $\sin \theta = \dfrac{{12}}{{13}}$
$\dfrac{{{{\sin }^2}\theta - {{\cos }^2}\theta }}{{2\sin \theta \cos \theta }} \times \dfrac{1}{{{{\tan }^2}\theta }}$…………………….(1)
Converting the equation in terms of sin by replacing $\cos \theta $and $\tan \theta $ by using $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ and${\cos ^2}\theta = 1 - {\sin ^2}\theta $
then the equation (1) becomes
$ = \dfrac{{{{\sin }^2}\theta - \left( {1 - {{\sin }^2}\theta } \right)}}{{2\sin \theta \cos \theta }} \times \dfrac{{{{\cos }^2}\theta }}{{{{\sin }^2}\theta }}$
$ = \dfrac{{{{\sin }^2}\theta - 1 + {{\sin }^2}\theta }}{{2\sin \theta \cos \theta }} \times \dfrac{{{{\cos }^2}\theta }}{{{{\sin }^2}\theta }}$
after using simple math, we get
$ = \dfrac{{2{{\sin }^2}\theta - 1}}{{2{{\sin }^3}\theta }} \times \cos \theta $
Putting the value of $\cos \theta $=\[\sqrt {1 - {{\sin }^2}\theta } \] we get
$ = \dfrac{{2{{\sin }^2}\theta - 1}}{{2{{\sin }^3}\theta }} \times \sqrt {1 - {{\sin }^2}\theta } $
Now we have found the equation in terms of $\sin \theta $. So putting the value of $\sin \theta $ in above equation
$ = \dfrac{{2{{\left( {\dfrac{{12}}{{13}}} \right)}^2} - 1}}{{2{{\left( {\dfrac{{12}}{{13}}} \right)}^3}}} \times \sqrt {1 - {{\left( {\dfrac{{12}}{{13}}} \right)}^2}} $
On taking the LCM as \[ \left( {13} \right)^2\]
$ = \dfrac{{2{{\left( {12} \right)}^2} - {{\left( {13} \right)}^2}}}{{2 \times {{\left( {13} \right)}^2} \times {{\left( {\dfrac{{12}}{{13}}} \right)}^3}}} \times \sqrt {\dfrac{{{{\left( {13} \right)}^2} - {{\left( {12} \right)}^2}}}{{{{\left( {13} \right)}^2}}}} $
on putting the value of square of 12 and 13, we get
=$\dfrac{{288 - 169}}{{2 \times \dfrac{{{{\left( {12} \right)}^3}}}{{13}}}} \times \dfrac{{\sqrt {169 - 144} }}{{13}}$
$ = \dfrac{{119}}{{2 \times 1728}} \times \sqrt {25} $
$ = \dfrac{{119 \times 5}}{{3456}}$
$ = \dfrac{{595}}{{3456}}$
So value of $\dfrac{{{{\sin }^2}\theta - {{\cos }^2}\theta }}{{2\sin \theta \cos \theta }} \times \dfrac{1}{{{{\tan }^2}\theta }}$ is $\dfrac{{595}}{{3456}}$.
Note- Some basic trigonometric equation should be in our mind which is very useful for converting the equation
${\sin ^2}\theta + {\cos ^2}\theta = 1$
${\sec ^2}\theta - {\tan ^2}\theta = 1$
$\cos e{c^2}\theta - {\cot ^2}\theta = 1$
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

